




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE1-第3讲空间点、直线、平面之间的位置关系[基础题组练]1.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c肯定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行解析:选C.若c与a,b都不相交,则c与a,b都平行,依据公理4,知a∥b,与a,b异面冲突.2.已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形肯定是()A.空间四边形 B.矩形C.菱形 D.正方形解析:选B.如图所示,易证四边形EFGH为平行四边形.因为E,F分别为AB,BC的中点,所以EF∥AC.又FG∥BD,所以∠EFG或其补角为AC与BD所成的角.而AC与BD所成的角为90°,所以∠EFG=90°,故四边形EFGH为矩形.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A.若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.4.(2024·广州市中学综合测试(一))在四面体ABCD中,E,F分别为AD,BC的中点,AB=CD,AB⊥CD,则异面直线EF与AB所成角的大小为()A.eq\f(π,6) B.eq\f(π,4)C.eq\f(π,3) D.eq\f(π,2)解析:选B.取BD的中点O,连接OE,OF,因为E,F分别为AD,BC的中点,AB=CD,所以EO∥AB,OF∥CD,且EO=OF=eq\f(1,2)CD,又AB⊥CD,所以EO⊥OF,∠OEF为异面直线EF与AB所成的角,由△EOF为等腰直角三角形,可得∠OEF=eq\f(π,4),故选B.5.已知棱长为a的正方体ABCDA′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是________________________________________________________.解析:如图,由题意可知MN∥AC.又因为AC∥A′C′,所以MN∥A′C′.答案:平行6.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是________.解析:①正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a,b有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.答案:①②③7.如图,在正方体ABCDA1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1、H、O三点共线.证明:如图,连接BD,B1D1,则BD∩AC=O,因为BB1綊DD1,所以四边形BB1D1D为平行四边形,又H∈B1D,B1D⊂平面BB1D1D,则H∈平面BB1D1D,因为平面ACD1∩平面BB1D1D=OD1,所以H∈OD1.即D1、H、O三点共线.8.在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解:(1)如图,连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.因为AB1=AC=B1C,所以∠B1CA=60°.即A1D与AC所成的角为60°.(2)连接BD,在正方体ABCDA1B1C1D1中,AC⊥BD,AC∥A1C1.因为E,F分别为AB,AD的中点,所以EF∥BD,所以EF⊥AC.所以EF⊥A1C1.即A1C1与EF所成的角为90°.[综合题组练]1.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线AC B.直线ABC.直线CD D.直线BC解析:选C.由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.2.在正三棱柱ABCA1B1C1中,|AB|=eq\r(2)|BB1|,则AB1与BC1所成角的大小为()A.eq\f(π,6) B.eq\f(π,3)C.eq\f(5π,12) D.eq\f(π,2)解析:选D.将正三棱柱ABCA1B1C1补为四棱柱ABCDA1B1C1D1,连接C1D,BD,则C1D∥B1A,∠BC1D为所求角或其补角.设|BB1|=eq\r(2),则|BC|=|CD|=2,∠BCD=120°,|BD|=2eq\r(3),又因为|BC1|=|C1D|=eq\r(6),所以∠BC1D=eq\f(π,2).3.(2024·长沙模拟)如图,在三棱柱ABCA′B′C′中,点E,F,H,K分别为AC′,CB′,A′B′,B′C′的中点,G为△ABC的重心.从K,H,G,B′四点中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为________.解析:取A′C′的中点M,连接EM,MK,KF,EF,则EM綊eq\f(1,2)CC′綊KF,得四边形EFKM为平行四边形,若取点K为P,则AA′∥BB′∥CC′∥PF,故与平面PEF平行的棱超过2条;因为HB′∥MK,MK∥EF,所以HB′∥EF,若取点H或B′为P,则平面PEF与平面EFB′A′为同一平面,与平面EFB′A′平行的棱只有AB,不符合题意;连接BC′,则EF∥A′B′∥AB,若取点G为P,则AB,A′B′与平面PEF平行.答案:G4.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是正方形,所以C1D=eq\r(2)AD,所以直线AC1与AD所成角的正切值为eq\r(2),所以异面直线AC1与BC所成角的正切值为eq\r(2).答案:eq\r(2)5.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相冲突.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC⊥BD,则FG⊥EG.在Rt△EGF中,由EG=FG=eq\f(1,2)AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.6.(综合型)如图,E,F,G,H分别是空间四边形ABCD各边上的点,且AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满意什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.解:(1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.所以E,F,G,H四点共面.(2)当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.因为eq\f(EH,BD)=eq\f(AE,AE+EB)=eq\f(m,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届福建省永春县第一中学高考全国统考预测密卷化学试卷含解析
- 医药行业夯实终端
- 乡村研学旅游
- 护士入职规范培训
- 2025年圆柱型锌空气电池项目建议书
- 2025届湖北省部分重点高中协作体高三下第一次测试化学试题含解析
- 学校消防安全小知识资料
- 甘肃省天水市秦安县第二中学2025届高三第二次联考化学试卷含解析
- 上海市师范大学附属第二外国语学校2025届高考适应性考试化学试卷含解析
- 2025年三聚氰胺合作协议书
- 2025年精密注塑市场分析报告
- 2025年室内设计师职业资格考试真题卷-室内设计软件操作与应用试题
- 2024年贵阳银行招聘考试真题
- 招聘流程及岗位说明手册
- 2024十堰张湾区中小学教师招聘考试试题及答案
- 2025年辽宁装备制造职业技术学院单招职业技能考试题库新版
- 肝衰竭诊治指南(2024年版)解读
- 肺功能培训课件
- 《焊接工艺与技能训练》课程标准
- 老旧小区改造施工方案及技术措施-2
- lonely planet 孤独星球 云南中文版 电子档
评论
0/150
提交评论