2024-2025学年甘肃省武威市古浪县职业技术教育中心高三第一次模拟考试数学试题理试卷含解析_第1页
2024-2025学年甘肃省武威市古浪县职业技术教育中心高三第一次模拟考试数学试题理试卷含解析_第2页
2024-2025学年甘肃省武威市古浪县职业技术教育中心高三第一次模拟考试数学试题理试卷含解析_第3页
2024-2025学年甘肃省武威市古浪县职业技术教育中心高三第一次模拟考试数学试题理试卷含解析_第4页
2024-2025学年甘肃省武威市古浪县职业技术教育中心高三第一次模拟考试数学试题理试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年甘肃省武威市古浪县职业技术教育中心高三第一次模拟考试数学试题理试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数,满足,则的最大值等于()A.2 B. C.4 D.82.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()A. B.C. D.3.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.54.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为85.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.166.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.7.曲线在点处的切线方程为,则()A. B. C.4 D.88.已知是边长为的正三角形,若,则A. B.C. D.9.下列函数中,既是奇函数,又是上的单调函数的是()A. B.C. D.10.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.A.360 B.240 C.150 D.12011.等比数列的各项均为正数,且,则()A.12 B.10 C.8 D.12.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,的系数为_______(用数字作答).14.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.15.已知非零向量的夹角为,且,则______.16.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,内角所对的边分别为,若,,且.(1)求的值;(2)求的面积.18.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.19.(12分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.(1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.20.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.21.(12分)设,,,.(1)若的最小值为4,求的值;(2)若,证明:或.22.(10分)已知函数.(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.2.D【解析】

由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,∴,即,∴,∴数列是以为公比的等比数列,而,所以,∴当时,,故选:D.本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.3.D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.4.D【解析】

由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.样本的平均数是,方差为,则的平均数为,方差为.5.D【解析】

根据复数乘方公式:,直接求解即可.【详解】,.故选:D本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.6.C【解析】

由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.7.B【解析】

求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B本题主要考查了导数的几何意义,切线方程,属于中档题.8.A【解析】

由可得,因为是边长为的正三角形,所以,故选A.9.C【解析】

对选项逐个验证即得答案.【详解】对于,,是偶函数,故选项错误;对于,,定义域为,在上不是单调函数,故选项错误;对于,当时,;当时,;又时,.综上,对,都有,是奇函数.又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.故选:.本题考查函数的基本性质,属于基础题.10.C【解析】

可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.【详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.∴共有结对方式60+90=150种.故选:C.本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.11.B【解析】

由等比数列的性质求得,再由对数运算法则可得结论.【详解】∵数列是等比数列,∴,,∴.故选:B.本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.12.D【解析】

由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.【详解】由题意,设每一行的和为故因此:故故选:D本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.60【解析】

根据二项式定理展开式通项,即可求得的系数.【详解】因为,所以,则所求项的系数为.故答案为:60本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题.14.①③④【解析】

先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.【详解】∵,∴曲线在点处的切线方程为,则.∵,∴,则是首项为1,公比为的等比数列,从而,,.故所有正确结论的编号是①③④.故答案为:①③④本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.15.1【解析】

由已知条件得出,可得,解之可得答案.【详解】向量的夹角为,且,,可得:,

可得,

解得,

故答案为:1.本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.16.100.【解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数.详解:由题意得,三等品的长度在区间,和内,根据频率分布直方图可得三等品的频率为,∴样本中三等品的件数为.点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,∵,∴,∴,化简可得,∴解得.(2)∵在中,,∴,∴,∴,∴.本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.18.(1);(2)【解析】

(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动点的轨迹的方程;(2)设出切线的斜率分别为,切点,,点,则可得过点的拋物线的切线方程为,联立抛物线方程并化简,由相切时可得两条切线斜率关系;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出,可求得,结合点满足的方程可得的取值范围,即可求得的范围.【详解】(1)设点,∵点到直线的距离等于,∴,化简得,∴动点的轨迹的方程为.(2)由题意可知,的斜率都存在,分别设为,切点,,设点,过点的拋物线的切线方程为,联立,化简可得,∴,即,∴,.由,求得导函数,∴,,,∴,因为点满足,由圆的性质可得,∴,即直线斜率的取值范围为.本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.19.(1)见解析(2)【解析】

(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:∵为等边三角形,为的中点,∴∵平面底面,平面底面,∴底面平面,∴又由题意可知为正方形,又,∴平面平面,∴平面平面(2)如图建立空间直角坐标系,则,,,由已知,得,设平面的法向量为,则令,则,∴由(1)知平面的法向量可取为∴∴平面与平面所成的锐二面角的余弦值为.本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20.(1)(2)【解析】

(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21.(1)2;(2)见解析【解析】

(1)将化简为,再利用基本不等式即可求出最小值为4,便可得出的值;(2)根据,即,得出,利用基本不等式求出最值,便可得出的取值范围.【详解】解:(1)由题可知,,,,,∴.(2)∵,∴,∴,∴,即:或.本题考查基本不等式的应用,利用基本不等式和放缩法求最值,考查化简计算能力.22.(1)极大值,极小值;(2)详见解析.【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论