




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市2024-2025学年七年级下学期数学月考试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.在,中的数为(
)A.1 B.2 C.3 D.42.下列计算正确的是(
)A. B.C. D.3.微生物包括细菌、病毒、真菌等,目前已知最小的微生物是病毒,其大小通常在几纳米到几百纳米之间.例如,口蹄疫病毒是已知最小的病毒之一,其直径约为0.000002厘米.将数据“0.000002”用科学记数法表示为(
)A.2 B.C.2 D.24.下列式子可用平方差公式计算的是(
)A. B.C. D.5.下列各图中,能直观解释“”的是()A.
B.
C.
D.
6.太阳与地球的平均距离约为米,光在真空中的传播速度约为米/秒,则太阳光传播到地球的时间约为(
)A.0.5秒 B.5秒 C.50秒 D.500秒7.若,则的值是(
)A.6 B.5 C. D.98.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后将其裁成2个长方形,然后将这两个长方形拼成一个新的长方形(如图所示),那么通过计算两个图形阴影部分的面积,可以验证的等式为(
)
A. B.C. D.9.若,则的值为(
)A.7 B.9 C.11 D.1310.现有甲、乙两张正方形纸片,将甲、乙并列放置后得到图1,已知为的中点,连接,.将乙纸片放到甲纸片的内部得到图2,已知甲、乙两张正方形纸片的面积之和为35,图2阴影部分的面积为6,则图1阴影部分的面积为(
)A.3 B.19 C.21 D.28二、填空题11.计算:.12.计算:.13.若是一个完全平方式,则常数k的值为.14.若将一个正方形的边长增加,其面积会增加,则这个正方形原来的边长是cm.15.我国古代数学曾有许多重要的成就,其中“杨辉三角”(如图)就是一例.这个三角形给出了(为自然数)的展开式的系数规律(按的次数由大到小顺序排列).例如,第三行的三个数1,2,1,恰好对应展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着展开式中各项的系数.则的展开式中的系数为;展开式中各项系数的和为.三、解答题16.计算:(1);(2).17.利用乘法公式计算.18.如图,学校有一块长方形的劳动教育基地,长为米,宽为米,为了满足需要,需在旁边开垦出新的土地,使原来的长增加米,宽增加米.(1)求该基地现在的土地面积.(用含的式子表示)(2)当时,求增加的土地面积.19.比较下列各组数的大小.(1)与.(2)与.20.在计算时,甲错把看成了6,得到的结果是;乙错把看成了4,得到的结果是.(1)求的值.(2)计算的正确结果.21.数学活动课上,老师准备了若干张如图1所示的三种纸片,种纸片是边长为的正方形,种纸片是边长为的正方形,种纸片是长为、宽为的长方形,用种纸片一张,种纸片一张,种纸片两张即可拼成如图2所示的大正方形.(1)观察图2,根据图中的面积写出关于的等量关系式:______;(2)若要拼出一个面积为的长方形,则需要种纸片____张,种纸片_______张,种纸片______张;(3)已知,求的值.22.观察下列各式的规律,解答下列问题.第个等式:.第个等式:.第个等式:.(1)根据上述规律,请写出第个等式:________.(2)猜想:________.(3)利用()中的结论,求的值.23.“数形结合”是数学中的一种重要的数学思想方法.我国著名数学家华罗庚曾说过,“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.由此可见数学学习和研究中数与形互相配合的重要性.(1)如图1,这是由4个全等的长方形拼出来的大、小正方形,请你根据图1,写出,之间的等量关系:________.(2)已知,求的值.(3)如图2,正方形与正方形的重合部分(长方形)的面积是1196,,四边形和四边形都是正方形,求出正方形的面积.《河南省周口市2024-2025学年七年级下学期数学月考试卷》参考答案题号12345678910答案DCCBCDABCB1.D【分析】本题主要考查了同底数幂的乘法,根据底数不变,指数相加即可得出答案.【详解】解:,则中的数为4,故选:D2.C【分析】本题主要考查了合并同类项,积的乘方,单项式除以单项式,根据相关知识点,一一判断即可;【详解】解:根据合并同类项可得:,故选项A错误,不符合题意;根据积的乘方可得:,故选项B错误,不符合题意;根据积的乘方可得:,故选项C正确,符合题意;根据单项式除以单项式可得:,故选项D错误,不符合题意.故选:C.3.C【分析】本题主要考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:,故选:C4.B【分析】本题考查平方差公式的使用,根据平方差公式一一判断即可.【详解】解:.不能使用平方差公式计算,故该选项不符合题意;.,可以使用平方差公式计算,故该选项符合题意;.,不能使用平方差公式计算,故该选项不符合题意;.,不能使用平方差公式计算,故该选项不符合题意;故选:B.5.C【分析】根据长方形和正方形的面积计算公式进行求解即可.【详解】、
表示,故不符合题意;B、
表示,故不符合题意;C、
表示,故符合题意;D、
表示,故不符合题意.故选:C.【点睛】本题主要考查了积的乘方计算,正确理解数形结合的思想求解是解题的关键.6.D【分析】本题主要考查了同底数幂的除法以及科学记数法.根据太阳到地球的距离除以光的速度,即可得出太阳光到达地球的时间.【详解】解:∵太阳到地球的距离约为米,光在真空中的传播速度约为米/秒,∴太阳光到达地球的时约为:(秒).故选:D.7.A【分析】本题主要考查了同底数幂的乘法的逆运算,根据代入计算即可.【详解】解:,故选:A8.B【分析】根据两种方式求得阴影部分面积即可求解.【详解】解:阴影部分面积面积可以表示大正方形的面积减去小正方形的面积即:,也可以表示为边长为与的长方形的面积,即,∴,故选B.【点睛】本题考查了平方差公式与几何图形面积,数形结合是解题的关键.9.C【分析】本题主要考查了根据完全平方公式求解,由可得出,进而可得出的值.【详解】解:∵,∴,即,∴,故选:C.10.B【分析】本题主要考查了完全平方公式的应用,设甲正方形边长为x,乙正方形边长为y,则,,,结合已知条件可得出,进而可得出,进一步求出,最后根据图1阴影部分的面积为两个正方形的面积之和减去两个三角形的面积代入计算即可.【详解】解:设甲正方形边长为x,乙正方形边长为y,则,,,根据题意可知:图2阴影部分的面积为,即,即,∴,∴,∴,∴,∵为的中点,∴,∴则图1阴影部分的面积为:故选∶B.11.【分析】本题主要考查了同底数幂的乘除混合运算,先算同底数幂的乘法,再算同底数幂的除法即可.【详解】解:,故答案为:12.【分析】本题考查了同底数幂乘法和积的乘方的逆用,熟练掌握同底数幂乘法法则,积的乘方的法则,是解决问题的关键.逆用同底数幂乘法法则,积的乘方法则,进行计算即可求解.【详解】解:,故答案为:.13.【分析】此题考查了完全平方式,利用完全平方公式的结构特征确定出的值即可.【详解】解:∵是一个完全平方式,∴故答案为:.14.4【分析】本题考查完全平方公式的几何背景.设这个正方形的边长为,得到变化后的边长为,由面积之间的关系列方程求解即可.【详解】解:设这个正方形的边长为,则变化后的边长为,由题意得,,解得,即这个正方形的边长为,故答案为:4.15.20128【分析】本题主要考查了整式的运算和规律探索,弄清“杨辉三角”中系数规律是解题的关键.(1)根据“杨辉三角”中系数规律确定出所求系数展开式中各系数,然后根据系数规律(按的次数由大到小顺序排列)即可得出的系数.(2)根据“杨辉三角”中系数规律确定出所求系数,并求出系数之和即可.【详解】解:(1)根据题意中例子所示,展开式中各系数分别为:1,6,15,20,15,6,1则的系数为20,故答案为:20;(2)当、2、3、4时,展开式的各项系数之和分别为2、4、8、16,由此可知展开式的各项系数之和为,∴展开式中各项系数的和为.故答案为:.16.(1)9;(2),【分析】本题主要考查了实数的混合运算以及整式的除法运算.(1)先计算负整数幂,零指数幂,求一个数的绝对值,然后再计算加减法即可.(2)按照多项式除以单项式计算即可.【详解】(1)解:;(2)解:.17.【分析】本题主要考查了利用平方差公式以及完全平方公式进行运算,先利用平方差公式展开,然后再利用完全平方展开即可.【详解】解:18.(1);(2)增加面积为.【分析】本题主要考查多项式乘多项式,列代数式是解题的关键,(1)利用矩形的面积公式进行作答即可;(2)将分别代入该基地现在的土地面积和原来基地的面积,然后做差即可得出答案.【详解】(1)解:(平方米),答:该基地现在的土地面积是平方米,(2)解:当时,该基地现在的土地面积为(平方米),原来基地的面积为(平方米),(平方米),答:增加的土地面积是平方米,19.(1);(2).【分析】本题考查了幂的大小比较,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.(1)根据同底数幂的逆运算进行变形,然后比较大小即可的运算法则求解.(2)根据幂的乘方逆运算进行变形,然后比较大小即可的运算法则求解.【详解】(1)解∶;∵∴(2)解:∵∴20.(1);(2).【分析】本题考查了整式的乘法运算,正确的计算是解题的关键.(1)根据条件求出代数式的值,对比结果,分别求出的值;(2)将(1)的的值代入代数式求解即可.【详解】(1)解:根据题意:,∵计算时,甲错把看成了6,得到的结果是∴,∴,,∵乙错把看成了4,得到的结果是,∴,∴.(2)解:根据,可知:21.(1);(2)3,2,7;(3)7.【分析】本题主要考查了完全平方公式的几何意义,即运用完全平方公式计算,多项式乘以多项式表示面积等知识,(1)图2可看作是边长为的正方形,因此面积为,图2也可以看作4个部分的面积和,即为,再根据二者面积相等,即可作答;(2)计算,即可作答;(3)根据即可作答.【详解】(1)解:图2是边长为的正方形,因此面积为,图2也可以看作4个部分的面积和,即为,所以关于a、b的等量关系式为:;故答案为:;(2)解:,则需要种纸片3张,种纸片2张,种纸片7张;(3)解:∵,,∴,即22.(1)(2)(3)【分析】()根据已知等式写成第个等式即可;()根据已知等式写出猜想即可;()根据()的结论求出的值,进而即可求解;本题考查了多项式乘以多项式,根据已知等式找到规律是解题的关键【详解】(1)解:由题意得,第个等式为,故答案为:;(2)解:由已知等式可猜想:,故答案为:;(3)解:∵,∴.23.(1);(2)24;(3)5184.【分析】本题考查完全平方公式的几何背景,完全平方公式变形应用,掌握完全平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版店面租赁转让合同
- 美甲用品销售协议
- 二零二五车位转让出租协议书范例
- 2025年中国环保型电炸锅行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国单色鞋底模具行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国曝光表行业发展运行现状及投资潜力预测报告
- 2025年中国乳制品行业市场运营现状及行业发展趋势报告
- 2025年中国网络插座模块行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国单面研磨机行业市场发展前景及发展趋势与投资战略研究报告
- 2025年中国车用柴油机行业市场调研分析及投资战略规划报告
- 压力机说明书
- 长江师范学院《C语言程序设计》2020-2021学年期末试卷B
- 义务教育阶段抑制学生两极分化的教育教学创新研究
- 韩国《寄生虫》电影鉴赏解读
- 智能化弱电工程维保方案全套
- (2.2)接地电阻试验报告
- 儿童嗜血细胞综合征
- 男女生正常交往讲座课件
- UNIT3语法专题课件人教版八年级英语下册
- 旅游资源分类、调查与评价
- T-DLSHXH 002-2023 工业干冰标准规范
评论
0/150
提交评论