软银:运营商AI - 格局、挑战及前行之路 Telco Al - Landscape Challenges and Path Forward_第1页
软银:运营商AI - 格局、挑战及前行之路 Telco Al - Landscape Challenges and Path Forward_第2页
软银:运营商AI - 格局、挑战及前行之路 Telco Al - Landscape Challenges and Path Forward_第3页
软银:运营商AI - 格局、挑战及前行之路 Telco Al - Landscape Challenges and Path Forward_第4页
软银:运营商AI - 格局、挑战及前行之路 Telco Al - Landscape Challenges and Path Forward_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Contents

Introduction:WhyAIisCrucialforTelco 3

PartI:Landscape 3

1AIforTelcoOverview 3

1.1HumanInteractionAI/LLM(callcenter,Q&Aoperation) 4

1.1.1AIasaCo-PilotforNetworkOperationsCenters 4

1.1.2ImprovingKnowledgeManagement 4

1.1.3CustomerExperienceImprovements 5

1.2OperationalAutomation 5

1.2.1AutomatingRoutineTasks 5

1.2.2IntelligentTroubleshooting 6

1.2.3ProactiveNetworkManagement 6

1.2.4MaximizingResourceUtilizationbyNetworkTuning 6

1.3RadioEvolution:“AI-for-RAN” 7

1.3.1CurrentIssuesinWirelessNetworks 7

1.3.2SolutionstotheChallengesthroughAIandML 8

1.3.3ExpectationsforAIandML 8

1.4Lookingaheadto6G 8

1.4.1ImprovingEnergyE^iciency 9

1.4.2EnhancingSecurityandPrivacy 9

1.4.3IssuestoConsiderBeforePracticalImplementation 9

1.5CostBenefitforAIIntegration 10

2CurrentIndustryInitiatives 11

2.1AI-RANAlliance:AI-NativeRadioAccessNetworks 11

2.2O-RANAlliance:OpenandIntelligentRANEcosystems 12

2.33GPPandITU:StandardizingAIforTelecommunications 13

2.4GlobalTelcoAIAlliance 13

PartII:UseCases,Challenges,PathForward 14

3UseCasesClassification:HumanAIandMachineAI 14

3.1HumanAI:Example 15

3.2MachineAI:Example 16

3.2.1ULChannelInterpolation 16

3.2.2SRSPrediction 17

3.2.3MACScheduler 18

1

4AIPillars 19

4.1Data 19

4.2Infrastructure 20

4.3BaseModel 21

5CreatingAIforTelco 21

5.1OptionsforCreatingAIModelsforTelco 21

5.2End-EndCycleofCreatingTelcoAIModels 26

Conclusion 26

References 27

Acknowledgment 27

2

Introduction:WhyAIisCrucialforTelco

ArtificialIntelligence(AI)hasbecomeaforcedrivinginnovationwiththeemergenceofGenerativeArtificialIntelligence(GenAI)andLargeLanguageModels(LLMs),becomingindispensableforallindustriesandverticalsectors.Telecommunicationsproviders(Telco)arenoexceptions,asGenAIissettofundamentallytransformhowtheymanagenetworks,interactwithcustomers,andoptimizeworkflows.ThiscomesatatimewhentheTelcoindustryisalreadyfacingincreasingchallengeswith5Ginvestments,heavyoperationalexpendituresand6Gemergingtowardstheendofthisdecade.However,intheseearlydaysofGenAI,severalchallengesexistinbuildingTelcoAImodelsandimplementingthem.Nevertheless,AIpresentsauniqueopportunityforTelcostorethinkhowtheirnetworksarebuiltandoperated.

Forthecapitalexpenses(CAPEX)pointofview,wecanreducethenumberofsites,equipment,andnecessaryspectrumbyimprovingspectrumeficiency.AItechnologiessuchasmachinelearninganddeeplearningcanenablemoreefectiveallocationandmanagementofradiofrequencies,helpingmaximizespectrumusageandminimizewaste.Thisimprovedspectrumeficiencycantranslatedirectlyintocostsavings,astheneedtoacquireadditionalspectrumlicensesispotentiallyreduced.

Fromtheoperationalexpenses(OPEX)pointofview,havingfewersitesandequipmenttooperatehelpsreducerunningcosts,includingland,labor,andelectricityexpenses.ByutilizingAIsupport,wecanmanageourinfrastructuremoreeficiently.Furthermore,implementingAI-drivensolutionsforcustomersupport,training,troubleshooting,configurationsetupsupport,andotheroperationaltaskswillhelpdecreaseoveralloperationalcosts.

AtSoftBank,wehaveembracedAIasatechnologycriticalforthefutureofmobilenetworks.Along-withourkeypartners,wehavebeenengagedinbuildinganddevelopingplatformsreadyforRadioAccessNetwork(RAN)stackandAIapplicationsontheedge.WehavealsobeenactivelydevelopingAI-basedmodelsforTelcostack(andoperations)andcontributingtobodiessuchastheAI-RANAlliance.Itisourintenttoshareourperspectivesonthistopicwiththebroaderindustry.

TherestofthisWhitePaperisorganizedasfollows:InthenextsectioninPartI,webrieflyelucidatetheimportanceofAIforTelcoacrosshumaninteractions,operations,andradionetworkimprovements.Inthefollowingsection,weprovideanoverviewofon-goingindustryinitiatives.InPartII,wefocusonourgeneralizedapproachtoAIforTelcoswithusecasesandTelco-specificchallenges.Wethenwalk-throughtheprocessofcreatingAIforTelcobyleveragingtheavailableAItoolkits.Finally,weconcludewithasummaryandapeekintoouron-goingworkonAIforTelco.ReaderswhoarefamiliarwithTelcoAIcanreadPartIandPartIIfairlyindependently.

PartI:Landscape

1AIforTelcoOverview

Inthissection,wedetailthepotentialbenefitsAIandLLMspresenttoTelcos.WedorecognizethatmanyTelcosarealreadyengagedinoneormoreoftheapplicationsweoutlinebelow,sowedonotintendtobecomprehensivebutprovideasnapshotofthepossibilities.ThissectionfocusesondescribingwhatAIcando.WewilldiscussourapproachtorealizingconceptssuchastheseinPartII.

3

1.1HumanInteractionAI/LLM(callcenter,Q&Aoperation)

ThetelecommunicationsindustryisincreasinglyleveragingAIandLLMsespeciallyinareasinvolvinghuman-operatorinteractions.Below,weexplorehowAIandLLMsaretransformingTelcooperations,theirimpactonproductivity,andtheirroleinautomatingmundaneworkflows.

1.1.1AIasaCo-PilotforNetworkOperationsCenters

AIandLLMsactasintelligentassistants,providingreal-timesupporttohumanoperatorsinnetworkoperationscenters(NOCs).ThefollowingitemsareexamplesofhowAIandLLMcanassistnetwork

operators.

lAnalyzeNetworkLogs:LLMscanprocessvastamountsofnetworktelemetrydatatoidentifypatterns,anomalies,andtrendsthatmightindicateunderlyingissues.Byrapidlyanalyzingthisdata,LLMshelpoperatorsquicklydiagnoseandresolvecustomerconcernsrelatedtonetworkperformance,connectivity,andotherservicedisruptions.Thisapproachnotonlyimprovesthespeedofissueresolution,butalsominimizespotentialdowntimeandenhancesoverallnetworkreliability.

lGenerateSummariesandRecommendations:NetworkoperatorscanrelyonLLMstodistillcomplexdatasetsintoconciseandactionablesummaries.TheseAIsystemsextractcriticalinsightsfromlargevolumesofdata,recommendspecificactionsbasedontheseinsights,andprovidestep-by-stepguidanceforresolvingidentifiedissues.Thiscomprehensivesupportallowsoperatorstomakeinformeddecisionsswiftly,ensuringeSicientnetworkmanagementandoptimalservicedelivery.

1.1.2ImprovingKnowledgeManagement

LLMscanenhanceinternalknowledgemanagement.Examplesofsuchsupportarelistedbelow.

lProvidingContextualAnswers:OperatorscanqueryLLMsforspecificinformationrelatedtonetworkconfigurations,troubleshootingprocedures,oroperationalprotocols.TheseAIsystemswillretrieveandpresentrelevantinformationquickly,eliminatingtheneedtomanuallysearchthroughextensivedocumentation.Thisnotonlysavestime,butalsoensuresthatoperatorshaveaccesstoaccurateandup-to-dateinformation.

lTrainingandOnboarding:NewoperatorscanuseLLM-poweredsystemstolearnaboutnetworkoperationsthroughinteractive,scenario-basedtrainingmodules.TheseAI-driventrainingprogramssimulatereal-worldnetworkissuesandguidenewhiresthroughtheresolutionprocess,acceleratingthelearningcurveandensuringtheyarewell-preparedforliveoperations.

lBridgingLanguageandExpertiseGaps:MultilingualLLMssupportoperatorsindiverseregionsbyprovidinglocalizedinsightsandinstructionsinmultiplelanguages.Thiscapabilityensuresconsistentoperationalstandardsandqualityofserviceacrossglobalteams,regardlessoflanguagebarriersorregionaldiSerencesinexpertise.Bybridgingthesegaps,LLMsenhancecommunicationandcollaborationwithininternationalTelcooperations.

4

1.1.3CustomerExperienceImprovements

CallCenterautomationusingAIandLLMsforinteractionwithcustomersisoneofthelow-hangingareasforimprovement.WiththeamazinginteractioncapabilitiesofLLMchatbots,theTelcoscansignificantlyreducetheircallcenterexpenseswhileleveragingvastamountsofsubscriberdata.ExamplesoftheAI-drivensystemsthatenhancecustomerexperienceareshownbelow.

lReducingServiceDisruptions:AI-drivenautomationcanquicklyaddresscommoncustomerissuesandqueries,reducingthelikelihoodofservicedisruption.Byprovidingimmediateandaccurateresponses,thesesystemsminimizetheneedforescalationtohumanagents,ensuringsmootherandmoreconsistentservice.

lImprovingResponseTime:TheabilityofLLMstorapidlyprocessandunderstandcustomerinquiriesleadstofasterresponsetime.Thispromptnessnotonlyresolvescustomerconcernsmoreeficiently,butalsoenhancesoverallservicequality.

lEnhancingCustomerSatisfactionandLoyalty:ByleveragingAItodelivertimelyandefectivecustomersupport,Telcoscansignificantlyimprovecustomersatisfaction.Satisfiedcustomersaremorelikelytoremainloyaltotheserviceprovider,reducingchurnratesandfosteringlong-termcustomerrelationships.Additionally,theinsightsgainedfromanalyzingcustomerinteractionscanbeusedtocontinuallyrefineandimprovethecustomersupportexperience.

1.2OperationalAutomation

OperationalautomationintelecommunicationsleveragesAIandLLMstostreamlineandenhancevariousaspectsofnetworkmanagementandservicedelivery.Theseadvancedtechnologiesplayapivotalroleinreducingthemanualworkloadonhumanoperators,optimizingnetworkperformance,andenablingproactivemaintenance.Byautomatingroutinetasks,facilitatingintelligenttroubleshooting,andsupportingproactivenetworkmanagement,AIandLLMscontributetosignificantimprovementsinoperationaleficiencyandcost-efectiveness.Below,weexplorespecificexamplesofhowthesetechnologiesarebeingutilizedinthetelecommunicationsindustry.

1.2.1AutomatingRoutineTasks

LLMsandAI-drivensystemsautomateroutinetasks,therebyfreeingupoperatorstoconcentrateonmorestrategicandvalue-addedactivities.Herearesomespecificexamplesofhowthesetechnologiesareutilized.

lPredictiveMaintenance:Byanalyzingsensordatacollectedfromnetworkequipment,AIsystemscanpredictwhencertaincomponentsarelikelytofail.Thisallowsmaintenanceteamstoaddresspotentialissuesproactively,schedulingrepairsorreplacementsbeforeanyactualfailuresoccur.Thispreemptiveapproachhelpspreventservicedisruption,enhancesnetworkreliability,andreducesunexpecteddowntime.

lDynamicNetworkConfigurations:AIcanoptimizenetworkconfigurationsdynamicallybyadjustingsettingsinreal-timetomanagebandwidth,frequency,and/orradioresourceblocksusagemoreeficiently.Duringpeaktimes,theAIsystemcanredistributenetworktrafictoavoidcongestion

5

andmaintainoptimalperformance.Thisensuresthatcustomersexperienceseamlessconnectivityevenduringhigh-demandperiods,thusimprovingoverallservicequality.

1.2.2IntelligentTroubleshooting

AIsystemsequippedwithLLMsarehighlyeSectiveinthetroubleshootingprocessastheyoSerseverallayersofsupporttoresolvenetworkissuesmoreeSiciently.

lIdentifyRootCauses:Thesesystemscananalyzelogsandtelemetrydatatoidentifytheunderlyingcausesofnetworkproblems.Byexaminingpatternsandanomalies,AIcanpinpointexactissuesthatmaybeaSectingnetworkperformance,allowingforquickerdiagnosisandtargetedinterventions.

lSuggestFixes:Onceaproblemisidentified,LLMscanprovideactionablerecommendationsforresolvingproblems.Thesesuggestionscanincludedetailedstepsformanualresolutionbyoperatorsorautomatedscriptsthatcanbeexecutedimmediately.Thisguidancesignificantlyreducesthetimerequiredtoaddressandrectifyproblems.

lAutomateResolutions:Insomecases,AIsystemscanexecutefixesautonomouslywithouthumanintervention.Forexample,ifacommonnetworkissueisdetected,theAIcanexecuteapredefinedsetofcorrectiveactionstoresolvetheproblemswiftly.Thiscapabilitynotonlyspeedsuptheresolutionprocess,butalsominimizestheburdenonhumanoperators.

1.2.3ProactiveNetworkManagement

AItechnologiesfacilitateproactivemanagementofnetworkinfrastructures,whichiscrucialformaintainingoptimalperformanceandpreventingissuesfromescalating.Here’showAImakesthispossible.

lMonitoringNetworkHealth:AIsystemscontinuouslyanalyzevariousmetricsrelatedtonetworkperformance,suchaslatency,throughput,anderrorrates.Bykeepingconstantvigilance,thesesystemscandetectpotentialissuesearly,enablingoperatorstoaddressthembeforetheyimpactservicequality.Thisongoingmonitoringensureshighnetworkreliabilityandcustomersatisfaction.

lCoreandTransportNetworkPlanning:AIcandynamicallyrecommendnetworkdesignsandpoliciesasnewdeploymentsoccur.Forinstance,whenexpandingnetworkcoverageorintroducingnewservices,AIcansuggestoptimalconfigurationsandresourceallocations.ThisensureseSicientuseoftheexistinginfrastructureandhelpsinmaintainingconsistentservicelevelsacrossthenetwork.

1.2.4MaximizingResourceUtilizationbyNetworkTuning

TheAIorchestratorleveragesadvancedAItechnologiestomaximizetheutilizationofnetworkassetsbyidentifyingineSicienciesandimplementingcorrectivemeasures.ThisoptimizationprocessensuresthatnetworkresourcesareusedeSectively,whichiscrucialformaintaininghighperformanceandreducingoperationalcostsinthetelecommunicationsindustry.

lRemovalofUnusedSites:AIalgorithmsanalyzetraSicpatternsandusagemetricstoidentifyunderutilizedorredundantsiteswithinthenetwork.Bydecommissioningthesesites,operatorscansignificantlyreduceoperationaloverhead,includingmaintenancecosts,energyconsumption,and

6

stafingrequirements.Thistargetedapproachensuresthatresourcesareallocatedtoareaswheretheyareneededmost,thusoptimizingnetworkeficiency.

lNight-TimeShutdowns:AIsystemscanintelligentlyschedulesiteshutdownsduringof-peakhours,suchasatnight,whennetworktraficisminimal.Thisstrategicshutdownconservesenergyandlowersoperationalcostswithoutimpactingservicequality.TheAIensuresthatessentialservicesremainavailablewhilenon-criticalsitesaretemporarilytakenoflinetosaveresources.

Networkingtuningisoftenacomplexandtime-consumingprocessforoperators.Traditionalmethodsrelyheavilyonmanualintervention,whichcanleadtosuboptimalconfigurationsandmissedopportunitiesforperformanceimprovement.AIsimplifiesthisprocessbycontinuouslyanalyzingnetworkbehaviorandrecommendingadjustmentsthatalignwithcurrentdemandandfutureprojections.Propertuningnotonlyimprovesresourceutilizationbutalsoenhancesoverallnetworkperformance.Bydynamicallyadjustingparameterssuchasbandwidthallocation,routingpaths,andloadbalancing,AIensuresbettercoverageandcapacity.

Aswecanseefromtheaboveexamples,theintegrationofAIandLLMsintelecommunicationsoperationsisrevolutionizinghuman-operatorinteractions.Thesetechnologiesnotonlyenhanceeficiencyandaccuracy,butalsohavethepotentialtosignificantlyreduceoperationalcosts.Byautomatingroutinetasks,enablingintelligenttroubleshooting,andsupportingproactivenetworkmanagement,AIandLLMsarevitaltoolsinthemodernTelcolandscape,drivingbothoperationalexcellenceandsuperiorcustomerexperiences.

1.3RadioEvolution:“AI-for-RAN”

1.3.1CurrentIssuesinWirelessNetworks

Eachgenerationofwirelessnetworks,fromLTEto5Gandfrom5Gto6G,isdefinedbythedemandsforfasterspeeds,greaterdatacapacity,andhigherperformance.Thedevicesandnetworkequipmentthatimplementthesestandardsarecontinuouslyevolvingtohandlemoretrafic.However,asmobiledatatraficcontinuestoincreasedaily,thereisapressingneedtofurtherexpandnetworkcapacity.Traditionally,thishasbeenaddressedbyaddingnewcellsitestoincreasenetworkcapacity.However,thisapproachencountersseveralchallenges,suchasthehardwareintroductioncycle,thescarcityofspacefornewcellsiteinstallationsinurbanareas,andtheperformancelimitsoftransportnetworks,makingitdificulttorapidlyincreasecapacity.

Anotherchallengeisthatmobilesystemscomprisenumerouscellsandfrequencybands,managedusinginter-cellcoordinationtechnologies.Inter-cellcoordinationacrossdiferentfrequenciesincludespracticessuchasCarrierAggregationandDualConnectivity.CoordinationwithinthesamefrequencyinvolvestechniqueslikeCoMP(CoordinatedMulti-Point),SFN(SingleFrequencyNetwork),andD-MIMO(DistributedMIMO).Whiletheseinter-cellcoordinationtechniquesenhanceeficiency,theyalsocontributetotheincreaseinnetworkcomplexity.

7

1.3.2SolutionstotheChallengesthroughAIandML

Inurbanareaswhereitischallengingtodeploynewcellsites,andinenvironmentswhereolderdevicesarestillinuse,AIandMLfunctionalitiesareexpectedtoenhancewirelessnetworkperformance.Forexample,animprovementinSINR(SignaltoInterferenceplusNoiseRatio)throughAI/MLcouldleadtothroughputincreases.Inareaswhereusertraficpatternsremainconsistent,thisenhancementinaveragethroughputcouldefectivelyequatetoanincreaseinnetworkcapacity.

1.3.3ExpectationsforAIandML

Wirelesspropagationiscomplexandvariable,andtherearelimitationstoimprovementsachievablethroughmathematicalmodelingalone.Therefore,usingAI/ML(ArtificialIntelligence/MachineLearning)tosolvethesecomplexissuesandenhancewirelessperformancehasbecomeacurrenttrend.Forexample,since3GPPRelease18,inter-cellcoordinationtechnologyhasgainedattention.Simplycombiningcellslogicallyasonecanleadtoadecreaseincapacity.Therefore,theschedulernotonlyallocatesPRBs(PhysicalResourceBlocks)asiftheywereinasinglecellbutalsoindependentlyallocatesPRBsasseparatecellsdependingonthesituation.Asthenumberofcoordinatingcellsincreases,thecomplexityalsoincreases.Tosolvethiscomplexproblem,itisnecessarytoappropriatelyprocessvariousdata,suchastheuser'smobility,datacommunicationstatus,radioquality,andthecongestionstatusofeachcoordinatingcell.Sincethisdataneedstobeaggregatedandanalyzed,aconfigurationlikeC-RAN(CentralizedRadioAccessNetwork)isdesirable.Usingtheaggregateddata,appropriateresourceallocationrequiresthecollection,computation,anddecision-makingofvariousdata.ThisisanareawhereAIexcels.Mobilesystemsoftenrequirecomplexprocessing,andthesechallengesexistatvariouslayers.Therefore,performanceimprovementsusingAIacrossalllayersarehighlyanticipated.

Figure1:ExpectationforAI/MLforwirelessperformanceenhancement

1.4Lookingaheadto6G

Mobiletechnologiesareevolving,shiftingfrom5Gto6G.TheITU-Risworkingon6Gstandardswithplanstocompletethemby2030.The3GPPwilldiscuss6Gin2026,aimingtofinishin2028.

8

Asignificantdiferencebetween6Gand5Gisthechangeintheunderlyingarchitecture.RANistraditionallycomposedofdedicatedhardwareandthisisreflectedin3GPPstandards.However,startingfromthe5Gera,significantchangeshavebeguntoappearintheRAN,suchasthepartialintroductionofsoftware-basedfront-haulsignalprocessingandstandardizationactivitiesinO-RAN.

AlthoughAIissaidtobethemainportioninthe6Gera,mostofthecurrent5GbasestationswerenotdesignedtosupportAI.Torealize6G,itisnecessarytotransitiontoanAI-nativenetworkarchitecture,assuggestedbythephrase'AIforNetwork,andNetworkforAI.'ThistransitionisexpectedtoenablemoreeficientimplementationofpreviouslydiscussedAI-drivenoperationsautomation,networkoptimization,andRANoptimizationusingAI/ML.

1.4.1ImprovingEnergyEOiciency

Improvingenergyeficiencyisacrucialchallengeinthenext-generationinfrastructure.Asignificantportionofthecurrentnetwork'stotalpowerconsumptionisattributabletoradiounits.Sincevirtualizingthehardwarepartofradiounitsthatactuallytransmitradiowavesisdificult,powerconsumptionincreaseswithgreaternumbersoffrequencybands.

However,notallradiounitsoperateatfullcapacity24/7.Therearetimeswhenusageislow,especiallyinruralareas,andthereareperiodswhentheyarehardlyusedatall.Turningthemofentirelyprecludesimmediateconnectivity.

ByusingAItopredictdemand,itbecomespossibletoreduceunnecessaryradiotransmissionsandoptimizepowerconsumptionwithoutcompromisingconnectivityperformance.

EnhancingSecurityandPrivacy

Inadditiontothecontinuousevolutionofconventionalcomputers,thedevelopmentofquantumcomputersisadvancing.Itissaidthatby2030,thecurrentencryptionmethodsusedincommunicationswillbecomevulnerable,andthestandardizationofnewencryptionmethods,termedPost-QuantumCryptography(PQC),isunderway.

Thesecuritychallengeisnotlimitedtoend-usersbutisalsoaconcernwithinnetworkinfrastructure,andtheneedforadvancedsecurityextendsbeyondthecommunicationlayer.Newsecuritytechnologiesarealsorequiredfordatastorageandauthentication.

Unfortunately,complexencryptionmethodsconsumeevenmorecomputingresources.Toaddressthisissue,researchisbeingconductedonutilizingAIinauthenticationandsecuritytechnologies.

1.4.2

IssuestoConsiderBeforePracticalImplementation

Torealizethefunctionalitiesdescribedherein,thereareseveralissuestobeaddressed,includinghowtooperatethesesystems.Belowaresomeexamples,thoughtheseareonlyafew,andadditionalchallengesareexpectedtoariseinthefuture.

9

lDataCollectionMethodsforAI/MLTraining:ToproduceAImodels,adatasetfortrainingisobviouslyrequired.InRANsystems,thebigchallengeismethodofdatacollectionfortraining.Forexample,whenconsideringtheapplicationofAItothelayersuchasL1,newdefinitionsandimplementationsfordatacollectionmethodsincommercialenvironmentsarenecessary.Statisticaldata,whichserveastypicalKPIs,areunsuitablefortraining,ascontinuousdataareneeded,butthevolumeofdatabecomesenormous.Therefore,eficientdatacollectionandtransfermethodsmustbeconsidered.

lApplicationMethodsofNewAIModelstoRAN:ForlowerlayerssuchasL1/L2,tomeetlatencyrequirements,itmaybenecessarytoplaceAIwithintheRANsoftware.AImodelswillundergofine-tuningandmaybereplacedwithnewalgorithms.ThisimpliesthattheAImodelswithintheRANwillneedtobeswappedout,buthowtodosowithoutimpactingserviceisacriticalchallengethatneedstobeaddressedforcommercialdeployment.

lManagementandMonitoringMethodsforAIModels:Evenwithinasingleusecase,multipleAImodelsmaybeinoperation.Forinstance,fine-tuningmightbecarriedouttosuitthecharacteristicsofurbanandruralareas.Therefore,AImodelswillvarybylayer,usecase,andcharacteristic.Incommercialoperations,therewillbediverseAImodels,eachofwhichneedstobeaccuratelymanagedandmonitoredcontinuously.Howtoachievethisisatopicthatneedsfurtherconsideration.

lDetectionandResolutionMethodsforAIModelErrors:IntheoperationofAI/ML,giventhatmobilesystemsrequirehighavailabilityandmustfunctionwithincomplexwirelessenvironments,theriskofperformancedegradationduetotheuseofAImustbeconsidered.Incommercialoperations,tominimizetheadverseefectsonusers,itisnecessarytodetectandresolveissuesearly.HowtodetectandsolvetheseAI-relatedproblemsatanearlystagemustbeexplored.

1.5CostBenefitforAIIntegration

Withtheincreasingtraficdrivenbyrichcontent,utilizingAItoimprovefrequencyutilizationeficiencyacrossthenetworkallowsformaintainingwirelessnetworkqualitywithfewercells.Thiscandelayorpreventtheneedforcellsplitting,whichnotonlyreducesthecapitalexpendituresassociatedwithcellinstallationbutalsolowersthelong-termoperationalcosts.

Inurbanareas,wherepopulationdensityandtrafictendtobehigh,Telcosfaceseveralchallengessuchasalackofavailablesitesforcellinstallationandhighcostsforprimelocations.Insuchurbanenvironments,AIintegrationofersevengreaterpotentialforcostsavings.Thepotentialcost-savingareasinclude:

lCellSiteConstruction:Theseincludeexpensesrelatedtoantennas,radiounits,transmissiondevices,theirinstallation,integration,andassociatedsoftwarerequiredforcellsplitting.

lOperationalCosts:Theseincludeexpensesrelatedtositerental,electricity,fiber,andpreventativemaintenancecoststiedtotheiroperation.Furthermore,bydynamicallyoptimizingnetworkequipmentusagebasedontraficdemands,excessivepowerconsumptioncanbemitigated,reducingelectricityexpenses.

10

lNetworkMonitoringandRepairCosts:Earlydetectionofsignsindicatingequipmentfailureallowsforpreventivemeasuressuchasscheduledmaintenanceandequipmentreplacementduringplannedinspections.Thishelpsreducecostsassociatedwithurgent,short-termrepairvisits.

lCellDesign:Comparedtomanualcelldesignbyspecialists,automatingtheidentificationofareaswithqualityissuesandsubsequentautomatedareadesigncanreducelaborcosts.

2CurrentIndustryInitiatives

Thetelecommunicationsindustryisundergoingatransformativeshiftwiththeintegrationofartificialintelligence(AI)intoitsoperations.Severalglobalalliances,includingtheAI-RANAlliance[1],O-RANAlliance[2],3GPP[3],InternationalTelecommunicationUnion(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论