




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Contents
Introduction:WhyAIisCrucialforTelco 3
PartI:Landscape 3
1AIforTelcoOverview 3
1.1HumanInteractionAI/LLM(callcenter,Q&Aoperation) 4
1.1.1AIasaCo-PilotforNetworkOperationsCenters 4
1.1.2ImprovingKnowledgeManagement 4
1.1.3CustomerExperienceImprovements 5
1.2OperationalAutomation 5
1.2.1AutomatingRoutineTasks 5
1.2.2IntelligentTroubleshooting 6
1.2.3ProactiveNetworkManagement 6
1.2.4MaximizingResourceUtilizationbyNetworkTuning 6
1.3RadioEvolution:“AI-for-RAN” 7
1.3.1CurrentIssuesinWirelessNetworks 7
1.3.2SolutionstotheChallengesthroughAIandML 8
1.3.3ExpectationsforAIandML 8
1.4Lookingaheadto6G 8
1.4.1ImprovingEnergyE^iciency 9
1.4.2EnhancingSecurityandPrivacy 9
1.4.3IssuestoConsiderBeforePracticalImplementation 9
1.5CostBenefitforAIIntegration 10
2CurrentIndustryInitiatives 11
2.1AI-RANAlliance:AI-NativeRadioAccessNetworks 11
2.2O-RANAlliance:OpenandIntelligentRANEcosystems 12
2.33GPPandITU:StandardizingAIforTelecommunications 13
2.4GlobalTelcoAIAlliance 13
PartII:UseCases,Challenges,PathForward 14
3UseCasesClassification:HumanAIandMachineAI 14
3.1HumanAI:Example 15
3.2MachineAI:Example 16
3.2.1ULChannelInterpolation 16
3.2.2SRSPrediction 17
3.2.3MACScheduler 18
1
4AIPillars 19
4.1Data 19
4.2Infrastructure 20
4.3BaseModel 21
5CreatingAIforTelco 21
5.1OptionsforCreatingAIModelsforTelco 21
5.2End-EndCycleofCreatingTelcoAIModels 26
Conclusion 26
References 27
Acknowledgment 27
2
Introduction:WhyAIisCrucialforTelco
ArtificialIntelligence(AI)hasbecomeaforcedrivinginnovationwiththeemergenceofGenerativeArtificialIntelligence(GenAI)andLargeLanguageModels(LLMs),becomingindispensableforallindustriesandverticalsectors.Telecommunicationsproviders(Telco)arenoexceptions,asGenAIissettofundamentallytransformhowtheymanagenetworks,interactwithcustomers,andoptimizeworkflows.ThiscomesatatimewhentheTelcoindustryisalreadyfacingincreasingchallengeswith5Ginvestments,heavyoperationalexpendituresand6Gemergingtowardstheendofthisdecade.However,intheseearlydaysofGenAI,severalchallengesexistinbuildingTelcoAImodelsandimplementingthem.Nevertheless,AIpresentsauniqueopportunityforTelcostorethinkhowtheirnetworksarebuiltandoperated.
Forthecapitalexpenses(CAPEX)pointofview,wecanreducethenumberofsites,equipment,andnecessaryspectrumbyimprovingspectrumeficiency.AItechnologiessuchasmachinelearninganddeeplearningcanenablemoreefectiveallocationandmanagementofradiofrequencies,helpingmaximizespectrumusageandminimizewaste.Thisimprovedspectrumeficiencycantranslatedirectlyintocostsavings,astheneedtoacquireadditionalspectrumlicensesispotentiallyreduced.
Fromtheoperationalexpenses(OPEX)pointofview,havingfewersitesandequipmenttooperatehelpsreducerunningcosts,includingland,labor,andelectricityexpenses.ByutilizingAIsupport,wecanmanageourinfrastructuremoreeficiently.Furthermore,implementingAI-drivensolutionsforcustomersupport,training,troubleshooting,configurationsetupsupport,andotheroperationaltaskswillhelpdecreaseoveralloperationalcosts.
AtSoftBank,wehaveembracedAIasatechnologycriticalforthefutureofmobilenetworks.Along-withourkeypartners,wehavebeenengagedinbuildinganddevelopingplatformsreadyforRadioAccessNetwork(RAN)stackandAIapplicationsontheedge.WehavealsobeenactivelydevelopingAI-basedmodelsforTelcostack(andoperations)andcontributingtobodiessuchastheAI-RANAlliance.Itisourintenttoshareourperspectivesonthistopicwiththebroaderindustry.
TherestofthisWhitePaperisorganizedasfollows:InthenextsectioninPartI,webrieflyelucidatetheimportanceofAIforTelcoacrosshumaninteractions,operations,andradionetworkimprovements.Inthefollowingsection,weprovideanoverviewofon-goingindustryinitiatives.InPartII,wefocusonourgeneralizedapproachtoAIforTelcoswithusecasesandTelco-specificchallenges.Wethenwalk-throughtheprocessofcreatingAIforTelcobyleveragingtheavailableAItoolkits.Finally,weconcludewithasummaryandapeekintoouron-goingworkonAIforTelco.ReaderswhoarefamiliarwithTelcoAIcanreadPartIandPartIIfairlyindependently.
PartI:Landscape
1AIforTelcoOverview
Inthissection,wedetailthepotentialbenefitsAIandLLMspresenttoTelcos.WedorecognizethatmanyTelcosarealreadyengagedinoneormoreoftheapplicationsweoutlinebelow,sowedonotintendtobecomprehensivebutprovideasnapshotofthepossibilities.ThissectionfocusesondescribingwhatAIcando.WewilldiscussourapproachtorealizingconceptssuchastheseinPartII.
3
1.1HumanInteractionAI/LLM(callcenter,Q&Aoperation)
ThetelecommunicationsindustryisincreasinglyleveragingAIandLLMsespeciallyinareasinvolvinghuman-operatorinteractions.Below,weexplorehowAIandLLMsaretransformingTelcooperations,theirimpactonproductivity,andtheirroleinautomatingmundaneworkflows.
1.1.1AIasaCo-PilotforNetworkOperationsCenters
AIandLLMsactasintelligentassistants,providingreal-timesupporttohumanoperatorsinnetworkoperationscenters(NOCs).ThefollowingitemsareexamplesofhowAIandLLMcanassistnetwork
operators.
lAnalyzeNetworkLogs:LLMscanprocessvastamountsofnetworktelemetrydatatoidentifypatterns,anomalies,andtrendsthatmightindicateunderlyingissues.Byrapidlyanalyzingthisdata,LLMshelpoperatorsquicklydiagnoseandresolvecustomerconcernsrelatedtonetworkperformance,connectivity,andotherservicedisruptions.Thisapproachnotonlyimprovesthespeedofissueresolution,butalsominimizespotentialdowntimeandenhancesoverallnetworkreliability.
lGenerateSummariesandRecommendations:NetworkoperatorscanrelyonLLMstodistillcomplexdatasetsintoconciseandactionablesummaries.TheseAIsystemsextractcriticalinsightsfromlargevolumesofdata,recommendspecificactionsbasedontheseinsights,andprovidestep-by-stepguidanceforresolvingidentifiedissues.Thiscomprehensivesupportallowsoperatorstomakeinformeddecisionsswiftly,ensuringeSicientnetworkmanagementandoptimalservicedelivery.
1.1.2ImprovingKnowledgeManagement
LLMscanenhanceinternalknowledgemanagement.Examplesofsuchsupportarelistedbelow.
lProvidingContextualAnswers:OperatorscanqueryLLMsforspecificinformationrelatedtonetworkconfigurations,troubleshootingprocedures,oroperationalprotocols.TheseAIsystemswillretrieveandpresentrelevantinformationquickly,eliminatingtheneedtomanuallysearchthroughextensivedocumentation.Thisnotonlysavestime,butalsoensuresthatoperatorshaveaccesstoaccurateandup-to-dateinformation.
lTrainingandOnboarding:NewoperatorscanuseLLM-poweredsystemstolearnaboutnetworkoperationsthroughinteractive,scenario-basedtrainingmodules.TheseAI-driventrainingprogramssimulatereal-worldnetworkissuesandguidenewhiresthroughtheresolutionprocess,acceleratingthelearningcurveandensuringtheyarewell-preparedforliveoperations.
lBridgingLanguageandExpertiseGaps:MultilingualLLMssupportoperatorsindiverseregionsbyprovidinglocalizedinsightsandinstructionsinmultiplelanguages.Thiscapabilityensuresconsistentoperationalstandardsandqualityofserviceacrossglobalteams,regardlessoflanguagebarriersorregionaldiSerencesinexpertise.Bybridgingthesegaps,LLMsenhancecommunicationandcollaborationwithininternationalTelcooperations.
4
1.1.3CustomerExperienceImprovements
CallCenterautomationusingAIandLLMsforinteractionwithcustomersisoneofthelow-hangingareasforimprovement.WiththeamazinginteractioncapabilitiesofLLMchatbots,theTelcoscansignificantlyreducetheircallcenterexpenseswhileleveragingvastamountsofsubscriberdata.ExamplesoftheAI-drivensystemsthatenhancecustomerexperienceareshownbelow.
lReducingServiceDisruptions:AI-drivenautomationcanquicklyaddresscommoncustomerissuesandqueries,reducingthelikelihoodofservicedisruption.Byprovidingimmediateandaccurateresponses,thesesystemsminimizetheneedforescalationtohumanagents,ensuringsmootherandmoreconsistentservice.
lImprovingResponseTime:TheabilityofLLMstorapidlyprocessandunderstandcustomerinquiriesleadstofasterresponsetime.Thispromptnessnotonlyresolvescustomerconcernsmoreeficiently,butalsoenhancesoverallservicequality.
lEnhancingCustomerSatisfactionandLoyalty:ByleveragingAItodelivertimelyandefectivecustomersupport,Telcoscansignificantlyimprovecustomersatisfaction.Satisfiedcustomersaremorelikelytoremainloyaltotheserviceprovider,reducingchurnratesandfosteringlong-termcustomerrelationships.Additionally,theinsightsgainedfromanalyzingcustomerinteractionscanbeusedtocontinuallyrefineandimprovethecustomersupportexperience.
1.2OperationalAutomation
OperationalautomationintelecommunicationsleveragesAIandLLMstostreamlineandenhancevariousaspectsofnetworkmanagementandservicedelivery.Theseadvancedtechnologiesplayapivotalroleinreducingthemanualworkloadonhumanoperators,optimizingnetworkperformance,andenablingproactivemaintenance.Byautomatingroutinetasks,facilitatingintelligenttroubleshooting,andsupportingproactivenetworkmanagement,AIandLLMscontributetosignificantimprovementsinoperationaleficiencyandcost-efectiveness.Below,weexplorespecificexamplesofhowthesetechnologiesarebeingutilizedinthetelecommunicationsindustry.
1.2.1AutomatingRoutineTasks
LLMsandAI-drivensystemsautomateroutinetasks,therebyfreeingupoperatorstoconcentrateonmorestrategicandvalue-addedactivities.Herearesomespecificexamplesofhowthesetechnologiesareutilized.
lPredictiveMaintenance:Byanalyzingsensordatacollectedfromnetworkequipment,AIsystemscanpredictwhencertaincomponentsarelikelytofail.Thisallowsmaintenanceteamstoaddresspotentialissuesproactively,schedulingrepairsorreplacementsbeforeanyactualfailuresoccur.Thispreemptiveapproachhelpspreventservicedisruption,enhancesnetworkreliability,andreducesunexpecteddowntime.
lDynamicNetworkConfigurations:AIcanoptimizenetworkconfigurationsdynamicallybyadjustingsettingsinreal-timetomanagebandwidth,frequency,and/orradioresourceblocksusagemoreeficiently.Duringpeaktimes,theAIsystemcanredistributenetworktrafictoavoidcongestion
5
andmaintainoptimalperformance.Thisensuresthatcustomersexperienceseamlessconnectivityevenduringhigh-demandperiods,thusimprovingoverallservicequality.
1.2.2IntelligentTroubleshooting
AIsystemsequippedwithLLMsarehighlyeSectiveinthetroubleshootingprocessastheyoSerseverallayersofsupporttoresolvenetworkissuesmoreeSiciently.
lIdentifyRootCauses:Thesesystemscananalyzelogsandtelemetrydatatoidentifytheunderlyingcausesofnetworkproblems.Byexaminingpatternsandanomalies,AIcanpinpointexactissuesthatmaybeaSectingnetworkperformance,allowingforquickerdiagnosisandtargetedinterventions.
lSuggestFixes:Onceaproblemisidentified,LLMscanprovideactionablerecommendationsforresolvingproblems.Thesesuggestionscanincludedetailedstepsformanualresolutionbyoperatorsorautomatedscriptsthatcanbeexecutedimmediately.Thisguidancesignificantlyreducesthetimerequiredtoaddressandrectifyproblems.
lAutomateResolutions:Insomecases,AIsystemscanexecutefixesautonomouslywithouthumanintervention.Forexample,ifacommonnetworkissueisdetected,theAIcanexecuteapredefinedsetofcorrectiveactionstoresolvetheproblemswiftly.Thiscapabilitynotonlyspeedsuptheresolutionprocess,butalsominimizestheburdenonhumanoperators.
1.2.3ProactiveNetworkManagement
AItechnologiesfacilitateproactivemanagementofnetworkinfrastructures,whichiscrucialformaintainingoptimalperformanceandpreventingissuesfromescalating.Here’showAImakesthispossible.
lMonitoringNetworkHealth:AIsystemscontinuouslyanalyzevariousmetricsrelatedtonetworkperformance,suchaslatency,throughput,anderrorrates.Bykeepingconstantvigilance,thesesystemscandetectpotentialissuesearly,enablingoperatorstoaddressthembeforetheyimpactservicequality.Thisongoingmonitoringensureshighnetworkreliabilityandcustomersatisfaction.
lCoreandTransportNetworkPlanning:AIcandynamicallyrecommendnetworkdesignsandpoliciesasnewdeploymentsoccur.Forinstance,whenexpandingnetworkcoverageorintroducingnewservices,AIcansuggestoptimalconfigurationsandresourceallocations.ThisensureseSicientuseoftheexistinginfrastructureandhelpsinmaintainingconsistentservicelevelsacrossthenetwork.
1.2.4MaximizingResourceUtilizationbyNetworkTuning
TheAIorchestratorleveragesadvancedAItechnologiestomaximizetheutilizationofnetworkassetsbyidentifyingineSicienciesandimplementingcorrectivemeasures.ThisoptimizationprocessensuresthatnetworkresourcesareusedeSectively,whichiscrucialformaintaininghighperformanceandreducingoperationalcostsinthetelecommunicationsindustry.
lRemovalofUnusedSites:AIalgorithmsanalyzetraSicpatternsandusagemetricstoidentifyunderutilizedorredundantsiteswithinthenetwork.Bydecommissioningthesesites,operatorscansignificantlyreduceoperationaloverhead,includingmaintenancecosts,energyconsumption,and
6
stafingrequirements.Thistargetedapproachensuresthatresourcesareallocatedtoareaswheretheyareneededmost,thusoptimizingnetworkeficiency.
lNight-TimeShutdowns:AIsystemscanintelligentlyschedulesiteshutdownsduringof-peakhours,suchasatnight,whennetworktraficisminimal.Thisstrategicshutdownconservesenergyandlowersoperationalcostswithoutimpactingservicequality.TheAIensuresthatessentialservicesremainavailablewhilenon-criticalsitesaretemporarilytakenoflinetosaveresources.
Networkingtuningisoftenacomplexandtime-consumingprocessforoperators.Traditionalmethodsrelyheavilyonmanualintervention,whichcanleadtosuboptimalconfigurationsandmissedopportunitiesforperformanceimprovement.AIsimplifiesthisprocessbycontinuouslyanalyzingnetworkbehaviorandrecommendingadjustmentsthatalignwithcurrentdemandandfutureprojections.Propertuningnotonlyimprovesresourceutilizationbutalsoenhancesoverallnetworkperformance.Bydynamicallyadjustingparameterssuchasbandwidthallocation,routingpaths,andloadbalancing,AIensuresbettercoverageandcapacity.
Aswecanseefromtheaboveexamples,theintegrationofAIandLLMsintelecommunicationsoperationsisrevolutionizinghuman-operatorinteractions.Thesetechnologiesnotonlyenhanceeficiencyandaccuracy,butalsohavethepotentialtosignificantlyreduceoperationalcosts.Byautomatingroutinetasks,enablingintelligenttroubleshooting,andsupportingproactivenetworkmanagement,AIandLLMsarevitaltoolsinthemodernTelcolandscape,drivingbothoperationalexcellenceandsuperiorcustomerexperiences.
1.3RadioEvolution:“AI-for-RAN”
1.3.1CurrentIssuesinWirelessNetworks
Eachgenerationofwirelessnetworks,fromLTEto5Gandfrom5Gto6G,isdefinedbythedemandsforfasterspeeds,greaterdatacapacity,andhigherperformance.Thedevicesandnetworkequipmentthatimplementthesestandardsarecontinuouslyevolvingtohandlemoretrafic.However,asmobiledatatraficcontinuestoincreasedaily,thereisapressingneedtofurtherexpandnetworkcapacity.Traditionally,thishasbeenaddressedbyaddingnewcellsitestoincreasenetworkcapacity.However,thisapproachencountersseveralchallenges,suchasthehardwareintroductioncycle,thescarcityofspacefornewcellsiteinstallationsinurbanareas,andtheperformancelimitsoftransportnetworks,makingitdificulttorapidlyincreasecapacity.
Anotherchallengeisthatmobilesystemscomprisenumerouscellsandfrequencybands,managedusinginter-cellcoordinationtechnologies.Inter-cellcoordinationacrossdiferentfrequenciesincludespracticessuchasCarrierAggregationandDualConnectivity.CoordinationwithinthesamefrequencyinvolvestechniqueslikeCoMP(CoordinatedMulti-Point),SFN(SingleFrequencyNetwork),andD-MIMO(DistributedMIMO).Whiletheseinter-cellcoordinationtechniquesenhanceeficiency,theyalsocontributetotheincreaseinnetworkcomplexity.
7
1.3.2SolutionstotheChallengesthroughAIandML
Inurbanareaswhereitischallengingtodeploynewcellsites,andinenvironmentswhereolderdevicesarestillinuse,AIandMLfunctionalitiesareexpectedtoenhancewirelessnetworkperformance.Forexample,animprovementinSINR(SignaltoInterferenceplusNoiseRatio)throughAI/MLcouldleadtothroughputincreases.Inareaswhereusertraficpatternsremainconsistent,thisenhancementinaveragethroughputcouldefectivelyequatetoanincreaseinnetworkcapacity.
1.3.3ExpectationsforAIandML
Wirelesspropagationiscomplexandvariable,andtherearelimitationstoimprovementsachievablethroughmathematicalmodelingalone.Therefore,usingAI/ML(ArtificialIntelligence/MachineLearning)tosolvethesecomplexissuesandenhancewirelessperformancehasbecomeacurrenttrend.Forexample,since3GPPRelease18,inter-cellcoordinationtechnologyhasgainedattention.Simplycombiningcellslogicallyasonecanleadtoadecreaseincapacity.Therefore,theschedulernotonlyallocatesPRBs(PhysicalResourceBlocks)asiftheywereinasinglecellbutalsoindependentlyallocatesPRBsasseparatecellsdependingonthesituation.Asthenumberofcoordinatingcellsincreases,thecomplexityalsoincreases.Tosolvethiscomplexproblem,itisnecessarytoappropriatelyprocessvariousdata,suchastheuser'smobility,datacommunicationstatus,radioquality,andthecongestionstatusofeachcoordinatingcell.Sincethisdataneedstobeaggregatedandanalyzed,aconfigurationlikeC-RAN(CentralizedRadioAccessNetwork)isdesirable.Usingtheaggregateddata,appropriateresourceallocationrequiresthecollection,computation,anddecision-makingofvariousdata.ThisisanareawhereAIexcels.Mobilesystemsoftenrequirecomplexprocessing,andthesechallengesexistatvariouslayers.Therefore,performanceimprovementsusingAIacrossalllayersarehighlyanticipated.
Figure1:ExpectationforAI/MLforwirelessperformanceenhancement
1.4Lookingaheadto6G
Mobiletechnologiesareevolving,shiftingfrom5Gto6G.TheITU-Risworkingon6Gstandardswithplanstocompletethemby2030.The3GPPwilldiscuss6Gin2026,aimingtofinishin2028.
8
Asignificantdiferencebetween6Gand5Gisthechangeintheunderlyingarchitecture.RANistraditionallycomposedofdedicatedhardwareandthisisreflectedin3GPPstandards.However,startingfromthe5Gera,significantchangeshavebeguntoappearintheRAN,suchasthepartialintroductionofsoftware-basedfront-haulsignalprocessingandstandardizationactivitiesinO-RAN.
AlthoughAIissaidtobethemainportioninthe6Gera,mostofthecurrent5GbasestationswerenotdesignedtosupportAI.Torealize6G,itisnecessarytotransitiontoanAI-nativenetworkarchitecture,assuggestedbythephrase'AIforNetwork,andNetworkforAI.'ThistransitionisexpectedtoenablemoreeficientimplementationofpreviouslydiscussedAI-drivenoperationsautomation,networkoptimization,andRANoptimizationusingAI/ML.
1.4.1ImprovingEnergyEOiciency
Improvingenergyeficiencyisacrucialchallengeinthenext-generationinfrastructure.Asignificantportionofthecurrentnetwork'stotalpowerconsumptionisattributabletoradiounits.Sincevirtualizingthehardwarepartofradiounitsthatactuallytransmitradiowavesisdificult,powerconsumptionincreaseswithgreaternumbersoffrequencybands.
However,notallradiounitsoperateatfullcapacity24/7.Therearetimeswhenusageislow,especiallyinruralareas,andthereareperiodswhentheyarehardlyusedatall.Turningthemofentirelyprecludesimmediateconnectivity.
ByusingAItopredictdemand,itbecomespossibletoreduceunnecessaryradiotransmissionsandoptimizepowerconsumptionwithoutcompromisingconnectivityperformance.
EnhancingSecurityandPrivacy
Inadditiontothecontinuousevolutionofconventionalcomputers,thedevelopmentofquantumcomputersisadvancing.Itissaidthatby2030,thecurrentencryptionmethodsusedincommunicationswillbecomevulnerable,andthestandardizationofnewencryptionmethods,termedPost-QuantumCryptography(PQC),isunderway.
Thesecuritychallengeisnotlimitedtoend-usersbutisalsoaconcernwithinnetworkinfrastructure,andtheneedforadvancedsecurityextendsbeyondthecommunicationlayer.Newsecuritytechnologiesarealsorequiredfordatastorageandauthentication.
Unfortunately,complexencryptionmethodsconsumeevenmorecomputingresources.Toaddressthisissue,researchisbeingconductedonutilizingAIinauthenticationandsecuritytechnologies.
1.4.2
IssuestoConsiderBeforePracticalImplementation
Torealizethefunctionalitiesdescribedherein,thereareseveralissuestobeaddressed,includinghowtooperatethesesystems.Belowaresomeexamples,thoughtheseareonlyafew,andadditionalchallengesareexpectedtoariseinthefuture.
9
lDataCollectionMethodsforAI/MLTraining:ToproduceAImodels,adatasetfortrainingisobviouslyrequired.InRANsystems,thebigchallengeismethodofdatacollectionfortraining.Forexample,whenconsideringtheapplicationofAItothelayersuchasL1,newdefinitionsandimplementationsfordatacollectionmethodsincommercialenvironmentsarenecessary.Statisticaldata,whichserveastypicalKPIs,areunsuitablefortraining,ascontinuousdataareneeded,butthevolumeofdatabecomesenormous.Therefore,eficientdatacollectionandtransfermethodsmustbeconsidered.
lApplicationMethodsofNewAIModelstoRAN:ForlowerlayerssuchasL1/L2,tomeetlatencyrequirements,itmaybenecessarytoplaceAIwithintheRANsoftware.AImodelswillundergofine-tuningandmaybereplacedwithnewalgorithms.ThisimpliesthattheAImodelswithintheRANwillneedtobeswappedout,buthowtodosowithoutimpactingserviceisacriticalchallengethatneedstobeaddressedforcommercialdeployment.
lManagementandMonitoringMethodsforAIModels:Evenwithinasingleusecase,multipleAImodelsmaybeinoperation.Forinstance,fine-tuningmightbecarriedouttosuitthecharacteristicsofurbanandruralareas.Therefore,AImodelswillvarybylayer,usecase,andcharacteristic.Incommercialoperations,therewillbediverseAImodels,eachofwhichneedstobeaccuratelymanagedandmonitoredcontinuously.Howtoachievethisisatopicthatneedsfurtherconsideration.
lDetectionandResolutionMethodsforAIModelErrors:IntheoperationofAI/ML,giventhatmobilesystemsrequirehighavailabilityandmustfunctionwithincomplexwirelessenvironments,theriskofperformancedegradationduetotheuseofAImustbeconsidered.Incommercialoperations,tominimizetheadverseefectsonusers,itisnecessarytodetectandresolveissuesearly.HowtodetectandsolvetheseAI-relatedproblemsatanearlystagemustbeexplored.
1.5CostBenefitforAIIntegration
Withtheincreasingtraficdrivenbyrichcontent,utilizingAItoimprovefrequencyutilizationeficiencyacrossthenetworkallowsformaintainingwirelessnetworkqualitywithfewercells.Thiscandelayorpreventtheneedforcellsplitting,whichnotonlyreducesthecapitalexpendituresassociatedwithcellinstallationbutalsolowersthelong-termoperationalcosts.
Inurbanareas,wherepopulationdensityandtrafictendtobehigh,Telcosfaceseveralchallengessuchasalackofavailablesitesforcellinstallationandhighcostsforprimelocations.Insuchurbanenvironments,AIintegrationofersevengreaterpotentialforcostsavings.Thepotentialcost-savingareasinclude:
lCellSiteConstruction:Theseincludeexpensesrelatedtoantennas,radiounits,transmissiondevices,theirinstallation,integration,andassociatedsoftwarerequiredforcellsplitting.
lOperationalCosts:Theseincludeexpensesrelatedtositerental,electricity,fiber,andpreventativemaintenancecoststiedtotheiroperation.Furthermore,bydynamicallyoptimizingnetworkequipmentusagebasedontraficdemands,excessivepowerconsumptioncanbemitigated,reducingelectricityexpenses.
10
lNetworkMonitoringandRepairCosts:Earlydetectionofsignsindicatingequipmentfailureallowsforpreventivemeasuressuchasscheduledmaintenanceandequipmentreplacementduringplannedinspections.Thishelpsreducecostsassociatedwithurgent,short-termrepairvisits.
lCellDesign:Comparedtomanualcelldesignbyspecialists,automatingtheidentificationofareaswithqualityissuesandsubsequentautomatedareadesigncanreducelaborcosts.
2CurrentIndustryInitiatives
Thetelecommunicationsindustryisundergoingatransformativeshiftwiththeintegrationofartificialintelligence(AI)intoitsoperations.Severalglobalalliances,includingtheAI-RANAlliance[1],O-RANAlliance[2],3GPP[3],InternationalTelecommunicationUnion(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库交接与责任划分计划
- 2025年区熔硅单晶项目发展计划
- 合伙做生意合同电子(2025年版)
- 2025年牛油果合作协议书
- 健康管理科工作总结计划
- 六年级上册数学教案 解决问题第5课时 西师大版
- 2025年钟表与计时仪器项目合作计划书
- 离婚协议书一个子女(2025年版)
- 豆子和葫芦嫁接方法
- 网上证券委托出售协议书
- 区域重力调查规范
- 人教版二年级下册数学《图形的运动(解决问题)》说课稿
- 人防工程竣工监理评估报告
- CJJ39-1991 古建筑修建工程质量检验评定标准(北方地区)
- 中医养生保健知识讲座完整版
- YB/T 6328-2024 冶金工业建构筑物安全运维技术规范(正式版)
- JTS-167-4-2012港口工程桩基规范
- 手术切口等级分类标准
- 帕金森治疗指南解读
- 客户服务与管理(微课版) 课件 项目三 呼入型客户服务与管理
- (正式版)JBT 10252-2024 YBEZ、YBEZX系列起重用隔爆型锥形转子制动三相异步电动机 技术规范
评论
0/150
提交评论