



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
纳米药物递送系统分析综述传统的癌症治疗药物会分布到全身,包括肿瘤部位和正常组织,因此需要纳米载体改善抗肿瘤效果,减少对正常组织的毒副作用。现在,已经有许多类型的纳米粒被用作纳米药物递送系统(NDDS)。经过多年的发展,研究人员都认为NDDS具有突破生物屏障、改善靶点特性、提高肿瘤组织渗透能力等优点。PDT使用的光敏剂大多具有疏水性,且缺乏肿瘤选择性,SDT用到的声敏剂很多都是由光敏剂发展来的,具有相似的特性,而纳米载体能够增强体内循环时间且能控释释放,是一种良好的药物输送方式。1.1纳米药物输送载体1.1.1有机纳米输送载体(1)基于脂质的输送载体脂质体是由双层脂质形成的小型纳米泡,亲水药物可以被包裹在囊泡内,而疏水性的药物可,基于脂质的纳米粒子具有良好的生物相容性、生物降解性和低免疫原性等特征ADDINEN.CITEADDINEN.CITE.DATA[\o"Gao,2014#145"152]。除脂质体外,其他基于脂质的纳米载体还包括固体脂质纳米粒(Solidlipidnanoparticles)、纳米脂质载体(Nanostructuredlipidcarriers)、脂质药物结合体等类型ADDINEN.CITE<EndNote><Cite><Author>Alavi</Author><Year>2019</Year><RecNum>146</RecNum><DisplayText><styleface="superscript">[153]</style></DisplayText><record><rec-number>146</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1618071842">146</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Alavi,M.</author><author>Hamidi,M.</author></authors></contributors><auth-address>DepartmentofNanobiotechnology,FacultyofScience,RaziUniversity,Kermanshah,Iran. ZanjanPharmaceuticalNanotechnologyResearchCenter(ZPNRC),Zanjan,Iran. DepartmentofPharmaceuticalNanotechnology,SchoolofPharmacy,ZanjanUniversityofMedicalSciences,Zanjan,Iran.</auth-address><titles><title>Passiveandactivetargetingincancertherapybyliposomesandlipidnanoparticles</title><secondary-title>DrugMetabPersTher</secondary-title></titles><periodical><full-title>DrugMetabPersTher</full-title></periodical><volume>34</volume><number>1</number><edition>2019/02/02</edition><keywords><keyword>AntineoplasticAgents/*administration&dosage/*therapeuticuse</keyword><keyword>Humans</keyword><keyword>Lipids/*administration&dosage</keyword><keyword>Liposomes</keyword><keyword>Nanoparticles/*administration&dosage/*chemistry</keyword><keyword>Neoplasms/*drugtherapy</keyword><keyword>*activetargeting</keyword><keyword>*cancertherapy</keyword><keyword>*lipidnanoparticles</keyword><keyword>*liposomes</keyword><keyword>*passivetargeting</keyword></keywords><dates><year>2019</year><pub-dates><date>Feb1</date></pub-dates></dates><isbn>2363-8915(Electronic) 2363-8915(Linking)</isbn><accession-num>30707682</accession-num><urls><related-urls><url>/pubmed/30707682</url></related-urls></urls><electronic-resource-num>10.1515/dmpt-2018-0032</electronic-resource-num></record></Cite></EndNote>[\o"Alavi,2019#146"153]。(2)基于聚合物的输送载体聚乳酸(PLA)是多种微生物产生的天然聚酯,可用作核苷酸、蛋白质和化疗药物的载体。PLA和磷脂膜具有相同的电荷,不会对磷脂膜造成破坏性威胁,其渗入细胞膜的机制有地毯模型、皮带模型和桶装模型。由于它产量低,成本高,还需要更进一步研究其合成生成才可促进它在生物药学的使用ADDINEN.CITEADDINEN.CITE.DATA[\o"Zhang,2021#213"154]。纳米凝胶是数十至数百纳米尺度的三维水凝胶颗粒,有聚合物通过物理或化学交联而成ADDINEN.CITE<EndNote><Cite><Author>Hamidi</Author><Year>2008</Year><RecNum>215</RecNum><DisplayText><styleface="superscript">[155]</style></DisplayText><record><rec-number>215</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1618799760">215</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Hamidi,M.</author><author>Azadi,A.</author><author>Rafiei,P.</author></authors></contributors><auth-address>FacultyofPharmacy,ShirazUniversityofMedicalSciences,P.O.Box71345-1583,Shiraz,Iran.hamidim@sums.ac.ir</auth-address><titles><title>Hydrogelnanoparticlesindrugdelivery</title><secondary-title>AdvDrugDelivRev</secondary-title><alt-title>Advanceddrugdeliveryreviews</alt-title></titles><periodical><full-title>AdvDrugDelivRev</full-title></periodical><pages>1638-49</pages><volume>60</volume><number>15</number><edition>2008/10/09</edition><keywords><keyword>Animals</keyword><keyword>Cross-LinkingReagents/chemistry</keyword><keyword>*DrugDeliverySystems</keyword><keyword>Humans</keyword><keyword>Hydrogels/*administration&dosage/chemistry</keyword><keyword>HydrophobicandHydrophilicInteractions</keyword><keyword>*Nanoparticles</keyword><keyword>Polymers/chemistry</keyword></keywords><dates><year>2008</year><pub-dates><date>Dec14</date></pub-dates></dates><isbn>1872-8294(Electronic) 0169-409X(Linking)</isbn><accession-num>18840488</accession-num><urls><related-urls><url>/pubmed/18840488</url></related-urls></urls><electronic-resource-num>10.1016/j.addr.2008.08.002</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[\o"Hamidi,2008#215"155]。化学交联凝胶具有非常稳定的网络结构,机械强度较高,可以通过交联程度、交联剂性质等改变制备可控孔径的交联凝胶。纳米凝胶的多种物理化学特性,比如尺寸、渗透性、含水量和亲水疏水性,都会虽pH值、温度等变化而变化,因此将其用作响应性纳米药物输送系统是可行的ADDINEN.CITEADDINEN.CITE.DATA[\o"Kuksenok,2014#217"156]。(3)基于蛋白多肽类的输送载体以蛋白质为基础的纳米输送载体通常具有良好的生物相容性、生物降解性和低毒性,可以由天然或合成的蛋白质与各种药物分子组合而成。已有许多研究报道用作化疗的热休克蛋白笼ADDINEN.CITEADDINEN.CITE.DATA[\o"Flenniken,2005#303"157],参与前药设计的白蛋白ADDINEN.CITE<EndNote><Cite><Author>Kratz</Author><Year>2008</Year><RecNum>305</RecNum><DisplayText><styleface="superscript">[158]</style></DisplayText><record><rec-number>305</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1620287265">305</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kratz,F.</author></authors></contributors><auth-address>HeadofMacromolecularProdrugs,TumorBiologyCenter,BreisacherStrasse117,D-79106Freiburg,Germany.felix@tumorbio.uni-freiburg.de</auth-address><titles><title>Albuminasadrugcarrier:designofprodrugs,drugconjugatesandnanoparticles</title><secondary-title>JControlRelease</secondary-title><alt-title>Journalofcontrolledrelease:officialjournaloftheControlledReleaseSociety</alt-title></titles><periodical><full-title>JControlRelease</full-title></periodical><pages>171-83</pages><volume>132</volume><number>3</number><edition>2008/06/28</edition><keywords><keyword>Animals</keyword><keyword>BindingSites</keyword><keyword>BiologicalTransport</keyword><keyword>Chemistry,Pharmaceutical</keyword><keyword>*DrugCarriers</keyword><keyword>DrugCompounding</keyword><keyword>*DrugDesign</keyword><keyword>DrugStability</keyword><keyword>Half-Life</keyword><keyword>Humans</keyword><keyword>Models,Molecular</keyword><keyword>*Nanoparticles</keyword><keyword>Prodrugs/*chemistry/metabolism</keyword><keyword>ProteinConformation</keyword><keyword>SerumAlbumin/*chemistry/metabolism</keyword></keywords><dates><year>2008</year><pub-dates><date>Dec18</date></pub-dates></dates><isbn>1873-4995(Electronic) 0168-3659(Linking)</isbn><accession-num>18582981</accession-num><urls><related-urls><url>/pubmed/18582981</url></related-urls></urls><electronic-resource-num>10.1016/j.jconrel.2008.05.010</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[\o"Kratz,2008#305"158],以及放射免疫治疗中出现的铁蛋白载体ADDINEN.CITE<EndNote><Cite><Author>Wu</Author><Year>2008</Year><RecNum>307</RecNum><DisplayText><styleface="superscript">[159]</style></DisplayText><record><rec-number>307</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1620287810">307</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wu,H.</author><author>Wang,J.</author><author>Wang,Z.</author><author>Fisher,D.R.</author><author>Lin,Y.</author></authors></contributors><auth-address>PacificNorthwestNationalLaboratory,Richland,WA99352,USA.</auth-address><titles><title>Apoferritin-templatedyttriumphosphatenanoparticleconjugatesforradioimmunotherapyofcancers</title><secondary-title>JNanosciNanotechnol</secondary-title><alt-title>Journalofnanoscienceandnanotechnology</alt-title></titles><periodical><full-title>JNanosciNanotechnol</full-title><abbr-1>Journalofnanoscienceandnanotechnology</abbr-1></periodical><alt-periodical><full-title>JNanosciNanotechnol</full-title><abbr-1>Journalofnanoscienceandnanotechnology</abbr-1></alt-periodical><pages>2316-22</pages><volume>8</volume><number>5</number><edition>2008/06/25</edition><keywords><keyword>Apoferritins/*chemistry</keyword><keyword>Humans</keyword><keyword>*MetalNanoparticles</keyword><keyword>Microscopy,Electron,Transmission</keyword><keyword>Neoplasms/*radiotherapy</keyword><keyword>*Radioimmunotherapy</keyword><keyword>Yttrium/*chemistry</keyword></keywords><dates><year>2008</year><pub-dates><date>May</date></pub-dates></dates><isbn>1533-4880(Print) 1533-4880(Linking)</isbn><accession-num>18572643</accession-num><urls><related-urls><url>/pubmed/18572643</url></related-urls></urls><electronic-resource-num>10.1166/jnn.2008.177</electronic-resource-num><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[\o"Wu,2008#307"159],它们具有良好的药代动力学性质,且稳定性也不错。1.1.2无机纳米输送载体常见的无机纳米输送载体有硅、金、银、铁等纳米粒子,还有一些纳米碳材料、量子点等,这些无机材料在药物输送、靶向给药以及肿瘤治疗等方面都显示出很好的应用前景。(1)介孔二氧化硅纳米粒介孔二氧化硅纳米粒(Mesoporoussilicananoparticle,MSN)在1992年首次被科学家报道ADDINEN.CITE<EndNote><Cite><Author>Kresge</Author><Year>1992</Year><RecNum>287</RecNum><DisplayText><styleface="superscript">[160]</style></DisplayText><record><rec-number>287</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1619767819">287</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kresge,C.T.</author><author>Leonowicz,M.E.</author><author>Roth,W.J.</author><author>Vartuli,J.C.</author><author>Beck,J.S.</author></authors></contributors><auth-address>MobilRes&DevCorp,CentResLab,Princeton,Nj08540</auth-address><titles><title>OrderedMesoporousMolecular-SievesSynthesizedbyaLiquid-CrystalTemplateMechanism</title><secondary-title>Nature</secondary-title><alt-title>Nature</alt-title></titles><periodical><full-title>Nature</full-title></periodical><alt-periodical><full-title>Nature</full-title></alt-periodical><pages>710-712</pages><volume>359</volume><number>6397</number><keywords><keyword>phosphate</keyword></keywords><dates><year>1992</year><pub-dates><date>Oct22</date></pub-dates></dates><isbn>0028-0836</isbn><accession-num>WOS:A1992JU65000049</accession-num><urls><related-urls><url><GotoISI>://WOS:A1992JU65000049</url></related-urls></urls><electronic-resource-num>DOI10.1038/359710a0</electronic-resource-num><language>English</language></record></Cite></EndNote>[\o"Kresge,1992#287"160],这种介孔结构纳米粒引起了强烈的注意,当时它主要在离子交换、催化和吸附等领域彰显作用,直到2001年,它被研究人员用作NDDS的载体ADDINEN.CITE<EndNote><Cite><Author>Vallet-Regi</Author><Year>2000</Year><RecNum>289</RecNum><DisplayText><styleface="superscript">[161]</style></DisplayText><record><rec-number>289</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1619768682">289</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Vallet-Regi,M.</author><author>Rámila,A.</author><author>delReal,R.P.</author><author>Pérez-Pariente,J.</author></authors></contributors><titles><title>ANewPropertyofMCM-41: DrugDeliverySystem</title><secondary-title>ChemistryofMaterials</secondary-title></titles><periodical><full-title>ChemistryofMaterials</full-title></periodical><pages>308-311</pages><volume>13</volume><number>2</number><section>308</section><dates><year>2000</year><pub-dates><date>2001/02/01</date></pub-dates></dates><publisher>AmericanChemicalSociety</publisher><isbn>0897-4756 1520-5002</isbn><urls><related-urls><url>/10.1021/cm0011559</url></related-urls></urls><electronic-resource-num>10.1021/cm0011559</electronic-resource-num></record></Cite></EndNote>[\o"Vallet-Regi,2000#289"161],随后十多年它便作为药物输送载体在纳米药物的诊断与治疗领域大放异彩。MSN是一种相当独特的纳米材料,早已被用作NDDS。它具有粒径小、孔径可调、表面积大、生物相容性良好等优点。肿瘤治疗时的副作用始终是不可忽视的,而MSN的毒性低,生物降解性优良,一定程度上降低了药物输送载体的副作用。明确的介孔结构和独特的中空结构,高表面积,高孔体积和可调整的孔径,确保了MSN巨大的负载能力ADDINEN.CITE<EndNote><CiteExcludeYear="1"><Author>Mamaeva</Author><Year>2013</Year><RecNum>12</RecNum><DisplayText><styleface="superscript">[162]</style></DisplayText><record><rec-number>12</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1585228401">12</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Mamaeva,V.</author><author>Sahlgren,C.</author><author>Linden,M.</author></authors></contributors><auth-address>TurkuCentreforBiotechnology,UniversityofTurkuandAboAkademiUniversity,P.O.Box123,FI-20521,Turku,Finland.</auth-address><titles><title>Mesoporoussilicananoparticlesinmedicine--recentadvances</title><secondary-title>AdvDrugDelivRev</secondary-title></titles><periodical><full-title>AdvDrugDelivRev</full-title></periodical><pages>689-702</pages><volume>65</volume><number>5</number><edition>2012/08/28</edition><keywords><keyword>Animals</keyword><keyword>DrugDeliverySystems/*methods</keyword><keyword>Humans</keyword><keyword>Nanoparticles/administration&dosage/*chemistry</keyword><keyword>Neoplasms/chemistry/drugtherapy/metabolism</keyword><keyword>ParticleSize</keyword><keyword>Phototherapy/methods</keyword><keyword>Porosity/drugeffects</keyword><keyword>SiliconDioxide/administration&dosage/*chemistry/metabolism</keyword><keyword>TissueDistribution/drugeffects/physiology</keyword></keywords><dates><year>2013</year><pub-dates><date>May</date></pub-dates></dates><isbn>1872-8294(Electronic) 0169-409X(Linking)</isbn><accession-num>22921598</accession-num><urls><related-urls><url>/pubmed/22921598</url></related-urls></urls><electronic-resource-num>10.1016/j.addr.2012.07.018</electronic-resource-num></record></Cite></EndNote>[\o"Mamaeva,2013#155"162]。同时,MSN易与其他功能材料通过表面涂层的方法杂交,获得新的理化特性ADDINEN.CITE<EndNote><CiteExcludeYear="1"><Author>Vivero-Escoto</Author><Year>2012</Year><RecNum>13</RecNum><DisplayText><styleface="superscript">[163]</style></DisplayText><record><rec-number>13</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1585233282">13</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Vivero-Escoto,J.L.</author><author>Huxford-Phillips,R.C.</author><author>Lin,W.</author></authors></contributors><auth-address>DepartmentofChemistry,UniversityofNorthCarolinaatChapelHill,CB#390,ChapelHill,NorthCarolina27599,USA.</auth-address><titles><title>Silica-basednanoprobesforbiomedicalimagingandtheranosticapplications</title><secondary-title>ChemSocRev</secondary-title></titles><periodical><full-title>ChemSocRev</full-title></periodical><pages>2673-85</pages><volume>41</volume><number>7</number><edition>2012/01/12</edition><keywords><keyword>Animals</keyword><keyword>CellLine,Tumor</keyword><keyword>ContrastMedia/*chemicalsynthesis/chemistry</keyword><keyword>DiagnosticImaging</keyword><keyword>Mice</keyword><keyword>Nanoparticles/*chemistry</keyword><keyword>Porosity</keyword><keyword>SiliconDioxide/*chemistry</keyword></keywords><dates><year>2012</year><pub-dates><date>Apr7</date></pub-dates></dates><isbn>1460-4744(Electronic) 0306-0012(Linking)</isbn><accession-num>22234515</accession-num><urls><related-urls><url>/pubmed/22234515</url></related-urls></urls><custom2>PMC3777230</custom2><electronic-resource-num>10.1039/c2cs15229k</electronic-resource-num></record></Cite></EndNote>[\o"Vivero-Escoto,2012#156"163],且其生物降解的速率还可以通过有机-无机杂交或金属离子掺杂等途径控制ADDINEN.CITEADDINEN.CITE.DATA[\o"Vivero-Escoto,2012#156"163,\o"Croissant,2017#157"164]。(2)其他无机纳米材料金纳米粒(AuNPs)是一种金属纳米粒,它可以被合成为各种形状,其中包括金纳米棒、三角形以及球形金纳米粒ADDINEN.CITEADDINEN.CITE.DATA[\o"Connor,2018#311"165]。AuNPs具有1~200nm可选择合成的尺寸,它的大小直接影响在体内的进程,比如小于100nm的AuNPs容易进入细胞内,小于20nm则可顺利穿透血管,而20~100nm的AuNPs更加安全,但也要考虑它的形状与表面修饰ADDINEN.CITE<EndNote><Cite><Author>Lewinski</Author><Year>2008</Year><RecNum>313</RecNum><DisplayText><styleface="superscript">[166]</style></DisplayText><record><rec-number>313</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1620306569">313</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lewinski,N.</author><author>Colvin,V.</author><author>Drezek,R.</author></authors></contributors><auth-address>DepartmentofBioengineeringMS-142,RiceUniversity,POBox1892,Houston,TX77251-1892,USA.</auth-address><titles><title>Cytotoxicityofnanoparticles</title><secondary-title>Small</secondary-title></titles><pages>26-49</pages><volume>4</volume><number>1</number><edition>2008/01/01</edition><keywords><keyword>Animals</keyword><keyword>Carbon/chemistry</keyword><keyword>CellSurvival/drugeffects</keyword><keyword>Humans</keyword><keyword>Metals/chemistry</keyword><keyword>Nanoparticles/chemistry/*toxicity</keyword><keyword>Semiconductors</keyword></keywords><dates><year>2008</year><pub-dates><date>Jan</date></pub-dates></dates><isbn>1613-6829(Electronic) 1613-6810(Linking)</isbn><accession-num>18165959</accession-num><urls><related-urls><url>/pubmed/18165959</url></related-urls></urls><electronic-resource-num>10.1002/smll.200700595</electronic-resource-num></record></Cite></EndNote>[\o"Lewinski,2008#313"166]。硫化铜可以通过热溶胶、气溶胶、溶液和热解等方法合成不同的形态和大小ADDINEN.CITE<EndNote><Cite><Author>Shamraiz</Author><Year>2016</Year><RecNum>210</RecNum><DisplayText><styleface="superscript">[167]</style></DisplayText><record><rec-number>210</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1618797186">210</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Shamraiz,U.</author><author>Hussain,R.A.</author><author>Badshah,A.</author></authors></contributors><auth-address>QuaidIAzamUniv,DeptChem,Islamabad45320,Pakistan</auth-address><titles><title>Fabricationandapplicationsofcoppersulfide(CuS)nanostructures</title><secondary-title>JournalofSolidStateChemistry</secondary-title><alt-title>JSolidStateChem</alt-title></titles><periodical><full-title>JournalofSolidStateChemistry</full-title></periodical><pages>25-40</pages><volume>238</volume><keywords><keyword>chalcogenides</keyword><keyword>nanostructures</keyword><keyword>electronmicroscopy</keyword><keyword>x-raydiffraction</keyword><keyword>electricalconductivity</keyword><keyword>chemicalbathdeposition</keyword><keyword>hollowspheres</keyword><keyword>thin-films</keyword><keyword>solvothermalsynthesis</keyword><keyword>growth</keyword><keyword>electrodeposition</keyword><keyword>superstructures</keyword><keyword>nanoparticles</keyword><keyword>microspheres</keyword><keyword>degradation</keyword></keywords><dates><year>2016</year><pub-dates><date>Jun</date></pub-dates></dates><isbn>0022-4596</isbn><accession-num>WOS:000375635200005</accession-num><urls><related-urls><url><GotoISI>://WOS:000375635200005</url></related-urls></urls><electronic-resource-num>10.1016/j.jssc.2016.02.046</electronic-resource-num><language>English</language></record></Cite></EndNote>[\o"Shamraiz,2016#210"167]。硫化铜纳米载体因其可以在肝细胞代谢后通过肝胆排泄物清除,能迅速从体内消除,所以适合作为无机纳米载体的临床应用。Ding等人制备的聚乙二醇修饰的硫化铜纳米系统在Hela细胞中表现出良好的光声成像效果ADDINEN.CITE<EndNote><Cite><Author>Ding</Author><Year>2015</Year><RecNum>212</RecNum><DisplayText><styleface="superscript">[168]</style></DisplayText><record><rec-number>212</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1618797823">212</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ding,K.</author><author>Zeng,J.</author><author>Jing,L.</author><author>Qiao,R.</author><author>Liu,C.</author><author>Jiao,M.</author><author>Li,Z.</author><author>Gao,M.</author></authors></contributors><auth-address>InstituteofChemistry,ChineseAcademyofSciences,BeiYiJie2,ZhongGuanCun,Beijing100190,China.gaomy@qiaorr@.</auth-address><titles><title>AqueoussynthesisofPEGylatedcoppersulfidenanoparticlesforphotoacousticimagingoftumors</title><secondary-title>Nanoscale</secondary-title></titles><periodical><full-title>Nanoscale</full-title></periodical><pages>11075-81</pages><volume>7</volume><number>25</number><edition>2015/06/10</edition><keywords><keyword>Animals</keyword><keyword>CellSurvival/drugeffects</keyword><keyword>Copper/*chemistry</keyword><keyword>HeLaCells</keyword><keyword>Humans</keyword><keyword>Male</keyword><keyword>MetalNanoparticles/*chemistry</keyword><keyword>Mice</keyword><keyword>Mice,InbredBALBC</keyword><keyword>Nanotechnology</keyword><keyword>PhotoacousticTechniques/*methods</keyword><keyword>PolyethyleneGlycols</keyword><keyword>Sulfides/*chemistry</keyword></keywords><dates><year>2015</year><pub-dates><date>Jul7</date></pub-dates></dates><publisher>TheRoyalSocietyofChemistry</publisher><isbn>2040-3372(Electronic) 2040-3364(Linking)</isbn><accession-num>26055816</accession-num><work-type>10.1039/C5NR02180D</work-type><urls><related-urls><url>/pubmed/26055816</url></related-urls></urls><electronic-resource-num>10.1039/c5nr02180d</electronic-resource-num></record></Cite></EndNote>[\o"Ding,2015#212"168]。1.2肿瘤的靶向递送化疗药不具有肿瘤选择性,因此导致全身毒性,为了特异性针对肿瘤细胞或实体瘤,研究人员的目光放在了研究肿瘤的生理病理特点以寻找生物标记物,并将其用与纳米药物输送载体的靶向递药。(1)被动靶向在实体瘤中,纳米药物可以通过增强的渗透性和滞留效应(EPR效应)增加肿瘤积累。1986年,Matsumura首次提出了EPR效应的概念ADDINEN.CITE<EndNote><Cite><Author>Matsumura</Author><Year>1986</Year><RecNum>220</RecNum><DisplayText><styleface="superscript">[169]</style></DisplayText><record><rec-number>220</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1618817688">220</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Matsumura,Y.</author><author>Maeda,H.</author></authors></contributors><titles><title>Anewconceptformacromoleculartherapeuticsincancerchemotherapy:mechanismoftumoritropicaccumulationofproteinsandtheantitumoragentsmancs</title><secondary-title>CancerRes</secondary-title><alt-title>Cancerresearch</alt-title></titles><periodical><full-title>CancerRes</full-title></periodical><pages>6387-92</pages><volume>46</volume><number>12Pt1</number><edition>1986/12/01</edition><keywords><keyword>Albumins/metabolism</keyword><keyword>Animals</keyword><keyword>Antibiotics,Antineoplastic/*metabolism</keyword><keyword>AntineoplasticAgents/*metabolism/therapeuticuse</keyword><keyword>EvansBlue/metabolism</keyword><keyword>Furans/*metabolism</keyword><keyword>MaleicAnhydrides/*metabolism/therapeuticuse</keyword><keyword>MetabolicClearanceRate</keyword><keyword>Mice</keyword><keyword>MolecularWeight</keyword><keyword>Neoplasms,Experimental/drugtherapy/*metabolism</keyword><keyword>Polystyrenes/*metabolism/therapeuticuse</keyword><keyword>Proteins/*metabolism</keyword><keyword>Zinostatin/analogs&derivatives/*metabolism/therapeuticuse</keyword></keywords><dates><year>1986</year><pub-dates><date>Dec</date></pub-dates></dates><isbn>0008-5472(Print) 0008-5472(Linking)</isbn><accession-num>2946403</accession-num><urls><related-urls><url>/pubmed/2946403</url></related-urls></urls><remote-database-provider>NLM</remote-database-provider><language>eng</language></record></Cite></EndNote>[\o"Matsumura,1986#220"169]。调节VEGF信号、使用TNF-α、NO等都能够促进EPR效应ADDINEN.CITEADDINEN.CITE.DATA[\o"Fang,2011#224"170,\o"Bae,2011#226"171]。影响EPR的因素包肿瘤大小、类型和位置,功能淋巴结存在或缺失以及巨噬细胞肿瘤渗透的程度。局部激活的PDT在一定程度上促进了EPR效应ADDINEN.CITEADDINEN.CITE.DATA[\o"Chen,2006#228"172]。此外,在超声成像或治疗中,超声导致的声孔效应令脂质渗透性增加,临床试验也提示着该声孔效应突破血脑屏障的功效ADDINEN.CITEADDINEN.CITE.DATA[\o"Guvener,2017#230"173-175]。然而EPR介导的肿瘤部位积累在人类中远不如动物模型明显。(2)主动靶向由于肿瘤异质性,每个癌症患者最好的治疗方式需要量身定做。为了实现这种目的,靶向配体被连接到各种治疗或成像剂上,各式各样的靶向配体能够选择性识别并结合到肿瘤细胞上ADDINEN.CITE<EndNote><Cite><Author>Srinivasarao</Author><Year>2015</Year><RecNum>218</RecNum><DisplayText><styleface="superscript">[176]</style></DisplayText><record><rec-number>218</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1618816774">218</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Srinivasarao,M.</author><author>Galliford,C.V.</author><author>Low,P.S.</author></authors></contributors><auth-address>DepartmentofChemistry,720ClinicDrive,PurdueUniversity,WestLafayette,Indiana47907,USA.</auth-address><titles><title>Principlesinthedesignofligand-targetedcancertherapeuticsandimagingagents</title><secondary-title>NatRevDrugDiscov</secondary-title></titles><periodical><full-title>NatRevDrugDiscov</full-title></periodical><pages>203-19</pages><volume>14</volume><number>3</number><edition>2015/02/24</edition><keywords><keyword>Animals</keyword><keyword>AntineoplasticAgents/*chemicalsynthesis/*pharmacology</keyword><keyword>ContrastMedia/*chemicalsynthesis/*pharmacology</keyword><keyword>DrugDeliverySystems</keyword><keyword>*DrugDesign</keyword><keyword>Humans</keyword><keyword>Ligands</keyword><keyword>Neoplasms/*diagnosis/*drugtherapy</keyword></keywords><dates><year>2015</year><pub-dates><date>Mar</date></pub-dates></dates><isbn>1474-1784(Electronic) 1474-1776(Linking)</isbn><accession-num>25698644</accession-num><urls><related-urls><url>/pubmed/25698644</url></related-urls></urls><electronic-resource-num>10.1038/nrd4519</electronic-resource-num></record></Cite></EndNote>[\o"Srinivasarao,2015#218"176]。目前被研究的主动靶向的配体有小分子化合物(如叶酸、半乳糖)、抗体、适配体等。抗体在肿瘤治疗中广为人知的一种用法是抗体-药物偶联物(Antibody-drugconjugate,ADC)ADDINEN.CITE<EndNote><Cite><Author>Ornes</Author><Year>2013</Year><RecNum>300</RecNum><DisplayText><styleface="superscript">[177]</style></DisplayText><record><rec-number>300</rec-number><foreign-keys><keyapp="EN"db-id="fefzva2arafxvjeezt3vr2rhx22ervre0wt2"timestamp="1620284458">300</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ornes,S.</author></authors></contributors><titles><title>Antibody-drugconjugates</title><secondary-title>ProcNatlAcadSciUSA</secondary-title><alt-title>ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica</alt-title></titles><periodical><full-title>ProcNatlAcadSciUSA</full-title></periodical><pages>13695</pages><volume>110</volume><number>34</number><edition>2013/08/22</edition><keywords><keyword>Antibodies,Monoclonal/chemistry/*metabolism</keyword><keyword>BrentuximabVedotin</keyword><keyword>DrugDeliverySystems/*trends</keyword><keyword>Humans</keyword><keyword>Immunoconjugates/*metabolism</keyword><keyword>PharmaceuticalPreparations/*metabolism</keyword></keywords><dates><year>2013</year><pub-dates><date>Aug20</date></pub-dates></dates><isbn>1091-6490(Electronic) 0027-8424(Linking)</isbn><accession-num>23964113</acc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度酒店客房预订与商务洽谈与住宿套餐合同
- 二零二五年度婚姻介绍所涉外婚姻服务合同
- 二零二五餐饮业商铺租赁合同附赠会员管理系统合作
- 2025年宜宾货运从业资格考题
- 《物流系统分析》课件 项目七任务一 认识物流系统控制
- 村支部书记发言稿
- 残联疫情发言稿
- 高中家长会:高二下学期期末家长会课件
- 吉安市房屋租赁合同
- 小红书平台独家代理运营合同
- 雅思海外阅读8套真题(含答案解析)
- GB/T 26060-2010钛及钛合金铸锭
- 一般的演出演艺报价单
- 高考专题复习:小说专题训练历史小说的特点
- 应急监测培训课件
- 人教部编版六年级下册道德与法治第二课-《学会宽容-第一课时-宽容让生活更美好》教学课件
- 高二语文(人教统编版)《包身工(第二课时)》【教案匹配版】最新国家级中小学课程课件
- 自制龙门架承载力计算说明
- -抗肿瘤药物的心脏毒性及防治新版课件
- 对核武器和核事故的防护
- 中国古代经济史讲稿
评论
0/150
提交评论