




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Authorized
PublicDisclosure
UnderstandingtheRoleofFisheriesandAquaculturein
CarbonSequestration
June2024
PublicDisclosureAuthorized
PublicDisclosureAuthorized
©2024InternationalBankforReconstructionandDevelopment/TheWorldBank
1818HStreetNW
Washington,DC20433
Telephone:202-473-1000
Internet:
ThisworkisaproductofthestaffoftheWorldBankwithexternalcontributions.Thefindings,interpretations,andconclusionsexpressedinthisworkdonotnecessarilyreflecttheviewsofTheWorldBank,itsBoardofExecutiveDirectors,orthegovernmentstheyrepresent.
TheWorldBankdoesnotguaranteetheaccuracy,completeness,orcurrencyofthedataincludedinthisworkand
doesnotassumeresponsibilityforanyerrors,omissions,ordiscrepanciesintheinformation,orliabilitywithrespecttotheuseoforfailuretousetheinformation,methods,processes,orconclusionssetforth.Theboundaries,colors,denominations,andotherinformationshownonanymapinthisworkdonotimplyanyjudgmentonthepartofTheWorldBankconcerningthelegalstatusofanyterritoryortheendorsementoracceptanceofsuchboundaries.
NothinghereinshallconstituteorbeconstruedorconsideredtobealimitationuponorwaiveroftheprivilegesandimmunitiesofTheWorldBank,allofwhicharespecificallyreserved.
RightsandPermissions
Thematerialinthisworkissubjecttocopyright.BecauseTheWorldBankencouragesdisseminationofitsknowledge,thisworkmaybereproduced,inwholeorinpart,fornoncommercailpurposesaslongasfullattributiontothisworkisgiven.
Anyqueriesonrightsandlicences,includingsubsidaryrights,shouldbeaddressedtoWorldBankPublications.,TheWorldBank,
1818HStreetNW,Washington,DC20433,USA;fax202-522-2625;email:pubrights@.
Attribution—Pleasecitetheworkasfollows:WorldBank.2024.UnderstandingtheRoleofFisheriesandAquacultureinCarbonSequestration.Washington,DC:WorldBank.
Coverphoto:©SeanStiengenger/SUsedwithpermissionofShutterstock.Furtherpermissionrequiredforreuse.
Acknowledgements
ThisworkwasfundedbythePROBLUETrustFund,andMiquelOrtega,VillyChristensen,JeroenSteenbeekandMartaCollatEcopathInternationalInitiative(EII),Barcelona,Spainpreparedthereport.
WhitePaper
UnderstandingtheRoleofFisheriesandAquacultureinCarbonSequestration
1
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
Contents
EXECUTIVESUMMARY 3
GLOSSARY 4
1.METHODS&SCOPE 5
2.INTRODUCTIONTOTHEBIOLOGIALPUMP 6
3.MODELINGTHEFISHCARBONPUMP 10
3.1Metabolic'production'processes 10
3.3definitionofkeystocksandflows 11
3.4Metabolic'production' 12
3.4.1Livingbiomass 16
3.4.2CarcassProduction 17
3.5biocheMicaltransforMations 18
3.6phyicaltransports 21
3.6.1.Fishactiveverticaltransport 21
3.6.2Watermassflows 21
3.7MobiledeMersalfishinggears-carbonsediMentinteractions 23
3.8Marinebenthicproducercarbonsequestraton 26
4.ICESWORKSHOPONASSESSINGTHEIMPACTOFFISHINGONOCEANICCARBON 29
4.1carbonpuMp 29
4.2fishingfleeteMissions 32
4.3fishingiMpacts 32
4.4furtherwork 32
5.RELEVANTPOLICYINITIATIVES 33
5.1unitedkingdoM 33
5.2europenaunion 33
5.3internationalcouncilfortheexplorationoftheseas 33
6.CONCLUSIONS 34
7.RECOMMENDATIONSANDNEXTSTEPS 36
7.1digitalresarchplatforM 36
7 1.1Quantifyfishandfisheriescarbonflows..........................................................................................................36
7.1.2Macroalgaldynamics 37
7.1.3Interactingwiththeenvironment 37
7.1.4Developmenttimelineandwiderimpact 37
7.2standardizingthedialogue 37
REFERENCES 38
2
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
Figures
Figure1:Mainprocessesregulatingthemarinecarboncycling(reproducedfromLutzandMartin,2014) 6
Figure2:Mainpathwaysandprocessesofthebiologicalpumpwithaspecificfocusonfish 8
Figure3:Modelsneededtoquantifythebiologicalpumpcarbonsequestrationofmarineecosystems 9
Figure4:Directandindirectimpactsoffishingoncarbonsinkdeadzones 11
Figure5-Fishandfisheriescarbonfluxscheme 12
Figure6-ConceptualviewoftheoceanicCaCO3cycle 15
Figure7-Simplifiedschemeoftheglobalcarboncycle.N 18
Figure8:Top-Mainfluxesandcarbonbudget;knowledgegapsandresearchpriorities 24
Figure9:Conceptualdiagramofthepathwaysforexportandsequestrationofmacroalgalcarbon 26
Figure10:Macroalgalcarbonsequestrationscheme 27
Tables
Table1:Sequestrationandsequestrationtimeofthebiologicalpumppathways 7
Table2:Productiontable 13
Table3:Remineralizationrates 19
Table4:Sinkingratesreferencevaluesforfishandzooplanktonfecalpelletsandcarcasses 19
Table5:Biochemicaltable 22
Table6:Physicaltransporttable 22
Table7:Keyresuspensionvariables 23
Table8:Linkbetweenseabedsedimentorganiccarbonandmobiledemersalfishing 25
Table9-Marinemacroalgaereferencevalues.(AdaptedfromKrause-JensenandDuarte,2016) 27
Table10:Summaryofkeyvariablesofbiologicalcarbonpumpmodelling,andwhytheymatter 30
Table11:Riskassessmentandconfidenceassessmentofenvironmentalfactorsgoverningseabedcarbon
remineralizationandstorage 31
3
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
EXECUTIVESUMMARY
Theoceanplaysacrucialroleinregulatingtheclimatebyabsorbingexcessiveheatandcarbondioxideemissions.Inadditiontosolubilityandthephysicalpump,thebiologicalpumpisincreasinglyacknowledgedasavitalcomponentofoceanecosystemservices.Marinelifecontributestotheabsorptionofatmosphericcarbonandsequestersitin
themarineenvironmentthroughvariousprocesses,withsequestrationoccurringfortimeperiodsrangingfromdailyprocessestothousandsofyears.
Inthiscontext,thereisagrowinginterestamongboththescientificcommunityandawidenetworkofstakeholderstoenhanceunderstandingandmodelingcapabilitiesconcerningfishandfisheries’carbonsequestrationprocesses.Overthepastfewdecades,significantprogresshasbeenmadeincomprehendingandcharacterizingtheseprocessesfor
theopenocean,resultinginabroadandexpandingliteraturewithsubstantialinformationonmanykeyparameters.Nonetheless,therearestillsignificantknowledgegaps,especiallyforcoastalandshelfareas,andthescientific
communityisactivelystrivingtoestablishacomprehensiveconsensusonessentialelementsrequiredforaccuratelyevaluatingtheeffectsoffishingactivitiesandpoliciesonmarinecarbonsequestration.
ThisASAsoughttoaddressthedevelopmentchallengeofcomprehensivelyquantifyingthecarbonsequestration
attributabletoimprovedfisheriesmanagementandaquaculture.ItfocusedondeliveringawhitepaperthatdescribesexistingandpotentialGHGaccountingmethodstoinformclimate-mitigationco-benefitsassessmentsofimprovedfisheriesmanagementandaquacultureproductioninvestmentsforamorecomprehensiveestimate.Theoutcomesofthisworkculminatedinawhitepaperwhichreliesonadetailedliteratureandstakeholderconsultationstoassessthepossibilityofenhancingexistingmodelstoovercometheidentifiedknowledgelimitationsinordertofurtherourknowledgeonhowtobettercapture/estimateclimate-mitigationco-benefitsfromimprovedfisheriesmanagementandseaweedproduction.
Thiswhitepaperprovidesthecurrentstateofscientificunderstandingofthefield,andsuggestsnextstepsforwardintermsofhowmodelingcancontributetofillingthisgap.Thereportisstructuredtosupportthefuturedevelopmentorenhancementofmodels,featuringamapofthekeystocksandflows,ananalysisofhowfishtransformand‘produce’carbon,anexplorationofthecarbonbiochemicaltransformationsinthemarineenvironment,andanexamination
ofphysicaltransportwithinthemarineecosystem.Additionally,itincludesdedicatedsectionsontheimplications
ofsedimentinteractionswithmobiledemersalfishinggearsforcarbonsequestration,thesignificanceofmarine
macroalgae-kelpecosystemsinthebiologicalcarbonpump,andnoteworthypolicyinitiativesrelatedtomarinecarbonsequestration.
Theresearchconductedhereidentifiedgeneralgaps,suchastheneedtobettercharacterizehowdifferentfish
contributetoandconsumethevariouscarbonflowsidentifiedinthemarinerealm,ortheneedtobettercharacterizetheinterrelationbetweentrawlingactivitiesandsedimentaryecosystems.Specificdifficultieshavebeenidentified
arisingfromthefactthatmostfishingactivitiestakeplaceonthemarineshelf,wherekeyphysicochemicaland
biologicalprocessesareoftenmorecomplexthanintheopenoceanwherecarbonflowsarebetterunderstood,leadingtoahigherlevelofcomplexityinevaluatingcarbonsequestrationtimesincoastalareas.
Thiswhitepaperconcludeswithasummaryhowexistingmodelscouldbeenhancedtoovercomesomeoftheidentifiedknowledgelimitations.Toaccomplishthis,thedevelopmentofcoupledfood-webmodelswithcarbonsequestration
modelsisproposed,aimingtoattainamorerealisticunderstandingoftheimplicationsoffishingactivitiesforcarbonsequestration.Inthefinalsection,thisvisioniselaboratedonwithrecommendationsfornextsteps.
4
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
GLOSSARY
AbbreviationDefinition
ACMCAmorphouscalcium–magnesiumcarbonate
ARCaudalfinaspectratio
CDRCarbondioxideremoval
CIConservationInternational
DICDissolvedinorganiccarbonDVMDiurnalverticalmigrationDOCDissolvedorganiccarbon
EBFMEcosystem-basedfisheriesmanagement
EBMEcosystem-basedmanagement
EwEEcopathwithEcosimfoodwebmodellingapproachHMCHighmagnesiumcalcite
IPCCIntergovernmentalPanelonClimateChange
LDOCLabileDOC
LMCLowmagnesiumcalcite
MHCMonohydrocalcite
NPZDNutrient,Phytoplankton,ZooplanktonandDetritusmodel
OCOrganiccarbon
PgCPetagramofcarbon(10^15grams=1gigaton)POCParticulateorganiccarbon
RILRelativeintestinallengthtobodystandardlengthTgCTeragramofcarbon(10^12grams)
5
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
Photocredit:TheWorldBank
1.METHODS&SCOPE
Theinformationprovidedinthisreporthasbeenobtainedfromfourdifferentsources:
•Aliteraturereviewwasconductedusinga“WebofScience”databasesearchinMarch2023withtwosetsof
searchterms:a)‘carbonsequestration’and‘biologicalpump’),andb)‘carbonsequestration’&‘fish’.Atotalof909referenceswereidentifiedandafterreviewingthetitleandabstracts,50paperswereselectedforacomplete
review.
•Theliteratureusedforthepresentationsoftheonline“Fish,Fisheries,andCarboninternationalworkshop”,heldlast6th,8thand9thofMarch2023,organizedbythe“OceanCarbon&Biogeochemistryprogram”andthediscussionsthattookplaceattheworkshop.
•Reviewoftheliteratureusedforthepresentationsofthe“WorkshoponAssessingtheImpactofFishingonOceanicCarbon”,held25-27April,2024,atICES,Copenhagen.Supplementedbyresultsfromdiscussionsattheworkshopandthedraftworkshopreport.
•Aroll-ontechniquewasusedtoreviewadditionalscientificpapersbasedonthereferencesofthepreviousmentionedpapers.Atotalof90additionalpaperswerereviewed.
Thisreportreviewsthecurrentscientificunderstandingoftheroleoffishinmarinecarbonsequestrationandhow
fishingaffectssequestrationprocesses.Thereviewexcludescarbonsequestrationmechanismsassociatedwithcoastalvegetationsystemssuchasmangroveforests,tidalmarshesandbenthicprimaryproducers,whichhavealreadybeenaddressedbroadlyintheliterature(Macreadieetal.,2021;Rosentreteretal.,2023;Zhongetal.,2023).Additionally,thereviewdoesnotincludethecarbonsequestrationprocessesassociatedwithaquacultureandanthropogenicocean-
basedcarbondioxideremoval(CDR)projects(Leblingetal.,2022).
6
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
2.INTRODUCTIONTOTHEBIOLOGIALPUMP
Theoceanplaysacriticalroleinregulatingtheclimatebyabsorbingexcessheatandcarbondioxideemissions.Overthelast60years,theoceanhasstoredapproximately23±5%ofanthropogeniccarbonemissions.Furthermore,sincethe1970s,theoceanhasabsorbedover90%oftheEarth’sexcessheat,accumulatedintheEarth’ssystem(IPCC,2021).
Theamountofcarbondioxideemittedintotheatmospherethatremainsdissolvedinseawaterisinfluencedbythreeinterlinkedprocesses:thesolubilitypump,whichisdependentonphysicochemicalconditionssuchasseawater
temperature,salinity,andtotalalkalinity;thephysicalpump,whichinvolveswaterfluxesandadvective-diffusivetransport;andthebiologicalpump(Figure1).
Figure1:Mainprocessesregulatingthemarinecarboncycling(reproducedfromLutzandMartin,2014)
Traditionally,ocean-relatedclimatechangeresearchhasfocusedonthesolubilitypumpandphysicalpump.
However,inrecentdecades,therehasbeenagrowingrecognitionoftheimportanceofthebiologicalpumpand
itsinterconnectionswiththesolubilityandphysicalpumps.Itisnowunderstoodthatthebiologicalpumpcanplay
asignificantroleintheoceansinkofanthropogeniccarbon,particularlyincertainregionalcontexts.Asaresult,
attentiononthebiologicalpumphasincreasedandislikelytocontinuetobeakeyareaofresearch(IPCC,2021;Wilsonetal.,2022).
Thebiologicalpumpreferstothevariousprocessesthattransferorganicmatterproducedbyphytoplanktonnetprimaryproductionfromthesurfaceoceantodepth,whereitcanbesequesteredformonthstomillennia.Whileresearchisongoingtoquantifythedifferentpathwaysthatcontributetocarbonsequestration,theirrelative
importanceisnotfullyunderstood(Nowickietal.,2022).
7
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
Thebiologicalpumpreferstothevariousprocessesthattransferorganicmatterproducedbyphytoplanktonnetprimaryproductionfromthesurfaceoceantodepth,whereitcanbesequesteredformonthstomillennia.Whileresearchisongoingtoquantifythedifferentpathwaysthatcontributetocarbonsequestration,theirrelative
importanceisnotfullyunderstood(Nowickietal.,2022).
Thethreemainpathwaysofthebiologicalpumparethe‘gravitationalpump’,the‘verticalmigrationpump’andthe
‘mixingpump’(Figure1).The‘gravitationalpump’involvesthepassivesinkingofParticulateOrganicCarbon(POC)in
theformofaggregates,carcasses,andfecalpellets.The‘verticalmigrantpump’referstotheactivetransportofcarbonbyverticallymigratingzooplankton,fish,andothermarineanimals.Last,the‘mixingpump’includesthephysical
transportofbothsuspendedPOCandDissolvedOrganicCarbon(DOC)bymarinewaterfluxes.
Carbondioxideisfixedintoorganiccarbon(OC)byphytoplanktonintheeuphoticzone,whereitispartiallyincorporatedintothemarinefoodweb.Onceconsumed,itcanbeinvolvedinexcretion,exudation,respiration,consumption,
aggregation,solubilizationandgrazingprocesseswherebacteria,zooplankton,fishandothermarineanimalsare
involved(Figure2).Whilemostoftheorganicparticlesarerecycledinsurfacewaters,asmallfractionsinksina
proportionthatiscalled‘exportrate’fromtheeuphoticzone,themixedsurfacelayer,oracrossanarbitraryhorizonoftensetaround100meters.Thebiologicalpumpexportsapproximately10(PgCyr−1(Nowickietal.,2022)tothe
deeperocean,withtheestimatedfish-basedcontributionbeingaround1.5±1.2(PgCyr−1(Sabaetal.,2021).However,itisimportanttonotethatthereisahighuncertaintyinestimationoffishexportflux,aggravatedbyfishhavingthehighestbiomassesincoastalandshelfareaswhereknowledgeaboutcarbonsequestrationiscursoryatbest.
ThesinkingfluxofPOCexportedfromthesurfaceoceanisrapidlyattenuatedduetoacombinationofabioticandbioticprocesses.Fragmentationbywaterturbulence,andzooplanktonandmicrobialactionconvertlarge,rapidlysettling
particlesintosmaller,moreslowlysettlingparticles,therebyreducingtheverticalfluxofPOC.Bioticprocessessuch
asmicrobialdegradationandconsumptionbyorganismsreducetheamountofsinkingPOCandsoreducetheflux,
convertingpartofittoDissolvedInorganicCarbon(DIC)throughrespiration(Countrymanetal.,2022).Theamountof
POCreachingthedeepoceanisonlybetween0.2and2%oftheexportedcarbon,thatis(0.02-0.2)PgCyr−1,somostofthesequesteredoceaniccarbonisDIC(Siegeletal.,2023).Thedepthandlocationatwhichorganiccarbonistransportedandremineralized,andthewaterfluxesinthearea,determinehowlongthecarbonissequesteredintheocean(Saba
etal.,2021).Ingeneral,carbonissequesteredforlongerthanayearbyparticlesthatpenetratebeneaththewintertimemixedlayer,andforuptocenturiesbyparticlesthatreachdeepwatermassesbelow1000m(Boydetal.,2019).
AccordingtoNowicki(2022),theannualglobalcarbonsequestrationbythebiologicalpumpis1293(1302-1281)PgC,withanaveragesequestrationtimeof127(133-122)years,whichiscoherentwiththeinventoryofDIC(Carteretal.,2021)fromrespiredorganicmatter:1300(±230)PgC,beingthegravitationalpumpthemoreimportantpathway(Table1).
Table1:Sequestrationandsequestrationtimeofthebiologicalpumppathways
Sequestration(PgC/year)
Sequestrationtime
(years)
Source
Mixingpump
102(100-106)
54(48-64)
Nowickietal.,2022
Gravitationalpump:aggregatePOC
207(98-293)
185(170-202)
Nowickietal.,2022
Gravitationalpump:fecalpelletPOC
833(746-943)
136(129-143)
Nowickietal.,2022
Migrantpump
150(83-188)
150(94-213)
Nowickietal.,2022
Undifferentiated
1300(±230)
Carteretal.,2021
~100m
~1000m
Mixingpump
DOCandPOCphysicaltransport
DOCandPOCphysicaltransport
DOCandPOCphysicaltransport
Photosynthesis-DIC
Bacteria
Phytoplankton
Fish
Fishfecalpellets
-fast
verticalspeed
Fish
RespirationDIC
Bacteria
Zooplanktonfecalpellets
RespirationDIC
Gravitationalpump(passivepump)
Respiration-DIC
Zooplankton
Sinking
phytoplankton
&
zooplankton
carcases
DOCandPOCproductionAggregationsZooplanktonfecalpellets
sinkingfsh
Aggreationsandfecalpellets
carcasses
Solubilization
&
disaggregation
Consumption
Zooplankton
DOCandPOC
Uptake
Fishfecalpellets
Solubilization
&
disaggregation
Bacteria
Uptake
DOCandPOC
Fish
Metazoans
Whales
-Largepelagicfsh
-Tactilepredatorsi.e.jellyfsh-Mesopelagicfsh
BathypelagicFish
Verticalmigrationpump(activepump)
Zooplankton
-Foragefish
-meso-
zooplankton-macro-
zooplankton
Depth
Euphoticzone
sequestrationtime1-10y
sequestrationtime10-100y
Mesopelagiczone
sequestrationtime100-1000y
Deepseazone
Figure2:Mainpathwaysandprocessesofthebiologicalpumpwithaspecificfocusonfish.DOC=Dissolvedorganiccarbon.POC=particulateorganiccarbon.DIC=dissolvedinorganiccarbon.Yellow=fishrelated(AdaptedfromSiegeletal.2021)
9
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
Thequantificationofcarbonfluxesandsequestrationprocessesintheoceanischallengingduetolimitationsin
theavailabledataforeverystepofthemarinecarboncycle.Thevariabilityoftheseprocessesunderdifferent
environmentalconditionsaddsfurthercomplexity.Additionally,thedifficultyofintegratingdifferenttypesofmodels,whichmayusedifferentassumptionsandinputdata,canleadtoadditionaluncertaintyinthefinalestimates(Figure3).
Metabolic
“production”model
•DOC,DIC,POCand
carbonatesproduction•Carcassesproduction
Fishingactive
gearsinteractions
withsediments
•Physicalprocesses
•Ecologicalimplications
Physicaltransport
•Watertransportservices
•Fishverticalmovements
Ecosystemmodel
•Mutlispeciesdynamicsandinteractions
Biochemicalmodel
•Particaltransformationsinthewatercolumn
•Particaltransformationsinthesediments
•Dissolved
▲
transformations
Environmental
conditions
•Temperature
•Salinity
•
......
Figure3:Modelsneededtoquantifythebiologicalpumpcarbonsequestrationofmarineecosystems.
10
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
3.MODELINGTHEFISHCARBONPUMP
Asdescribedabove,phytoplankton,zooplanktonandbacteriaplayamajorroleinthefunctioningofthebiologicalpump,butinadditionmarinevertebrates,andespeciallyfish,throughmultipleprocessesalsohavearoleinmarinecarbonsequestration.
3.1Metabolic'production'processes
•POCproduction:Fisheatandrepackagefoodintocarbon-richfecalpelletsthatsinkrapidlythroughthewatercolumnuntilapartreachesthebottomoftheocean.Atthesametime,fishalsocontributetoPOCdegradationthroughconsumptionprocesses.
•DOCandDICproduction:Fish,whenalive,produceDOC,andthroughrespirationDIC,thatisintegratedinthewatercolumn,wherebiologicalandphysicalprocesseswilldeterminatetheirstoragetimeintheocean.
•Carbonateproduction:Fishproducecarbonate(CaCO3)1asaby-productoftheosmoregulationprocess.
•Carcassproduction:Whenfishandotherlargemarinevertebratesdie,theircarcassessinkrapidlytotheseafloor,wherethecarbonbiomassistransformed(andpartiallypredatedbyotherorganisms)andinpartpotentially
buried.
•Livingbiomasscarbon:Alllivingthingsarepartiallymadeofcarbonandthusserveascarbonreservoirsthroughtheirlifespans.Thelargerandmorelong-livedanorganismis,andthelargerapopulationis,themorecarbonisstored.
•Otherindirectrelatedprocesses:
°Fertilizingspecies:manymarinevertebrates,suchaswhales,haveactivehorizontalandverticalmovements.Vertically,whalesdivetofeedandreturntothesurfacetobreathe.Whileatthesurface,theyreleasebuoyantfecalplumesthatarerichinnutrientsthatphytoplanktonneedforgrowth,stimulatingcarbondioxide
capture.Horizontally,manywhalespeciesundertakeseasonalmigrationsfromnutrient-richfeedinggroundstonutrient-poorbreedinggrounds.Atthesebreedinggrounds,whalesreleasenitrogen-richurea,whichcanpromotephytoplanktongrowthandstimulatecarbondioxidecapture.
°Coastalcascadecarbon:Marinepredatorshelpmaintainthecarbonstoragefunctionofcoastalvegetationbykeepingherbivorepopulationsincheck.Thisprocesscanberelevantforcoastalbluecarbonandseaweed(Atwoodetal.,2015).
°Biomixingcarbon:Theswimmingmovementsofmarineanimalscanstirupnutrientstowardssurfacewaters,whichphytoplanktoncanusetogrow,absorbingcarbonintheprocess.
Theprocessesdescribedhavedifferentlevelsofuncertaintyandrelevanceforcarbonsequestration.
3.2Fisheries
Unlikefarming,whichisgenerallynotconsideredacarbonsinkunlessspecificallydesignedtocaptureexcesscarbon(e.g.,Leifeld2023),fisheriesdirectlyandindirectlyinfluenceanumberoflarge-scale,long-termoceaniccarbon
sequestrationpathways(Krabbeetal,2022)andtherefore,fisheriesmanagementmayaidtoprovidesomelevelofcontroloncarbonsequestration.
Fishingactivitiesinteractdirectlywiththeprocessesdescribedabovebyextractingbiomassandchangingthefoodwebstructureandfunctioningofecosystems.Asaconsequence,fisheriesnotonlyaffectvolumesoflivingbiomassorcarcasses,butaffectfishPOC,DOCandDICtotalproductionandtheindirectprocessdescribedearlier.
1Atlong-termcarbonatedilutesandbecomesdissolvedinorganiccarbon/articles/s41561-021-00743-y
11
UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration
Further,somefishingpractices,suchasbottomtrawlinghavedirectimpactsontheseafloorandcanpotentially
reintroducecarboninthesedimentintothewatercolumn,therebyimpactingcarbonsequestrationbyalteringtheseabottom(Figure4).
Figure4:Directandindirectimpactsoffishingoncarbonsink:1)Fertilizingspecies,2)egestionoffast-sinkingcar-
bon-richfecalpellets,3)harvestinglow-midtrophiclevelpellet-producingspecies,4)removingspecieslivingneartheseabedwherethesinkofcarbonwillbeshort,5)sedimentdisturbancefromgroundfishharvesting,6)removingresi-
dentormigratorymesopelagicspeciesthatcontributetothecarbonsink,7)removinglargefishandwhalesreducing
largefallsofdeadorganicmattertothedeepseaandsediment.Indirectimpacts:8)causingtrophiccascadeswhen
removinghightrophiclevelspeciesimpactinglowtrophiclevelcommunitiesthatsinkcarbon,9)removingpreyitemsforfertilizingspecies,10)killingpredatorsthatmayotherwisefertilizetheoceansandmaintainabalancedfoodweb,11)releaseofdiscardswhichcouldcauselocalizeddeadzones(AdaptedfromCavanandHill2022)
Thefollowingsectionexploresthemaindirectprocessesbywhichfisheriescontributetocarbonsequestration.Itdescribestheseprocesses,reportssomekeyreferencevalues,andpointsoutsomeofthemaindiscussionsanduncertainties.
3.3deFinitionoFkeystocksandFlows
Figure5showsasimplifiedgeneralschemeofthedifferentsectionsthatafish-carbonmodelrequires.Thescheme
assumesthebiomassdistributionisknownforthekeyfishgroupsofspeciesinanecosystemthatcanbeobtained,forexamplefromafood-webmodel.
12
UnderstandingtheRoleoftheFisheriesa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同解除条件合同范本
- 反担保合同范例app
- 小学课题申报书 写字
- 高校省级课题申报书
- 员工合同范本表
- 师德建设课题申报书
- 企业员工租房合同范本
- 吉安农村生意转让合同范例
- 申报课题没申报书
- 医疗务工合同范本武威市
- 2025年国航机务系统AMECO工程师岗位校园招聘笔试参考题库附带答案详解
- 《物联网中间件》课件
- 2025年中国建材集团所属中建材联合投资有限公司招聘笔试参考题库附带答案详解
- 水幕喷淋系统的工作原理与应用
- 门楼施工方案
- 全国职业院校技能大赛高职组(康复治疗技术赛项)考试及答案
- 2024年08月河北唐山银行第二批社会招考笔试历年参考题库附带答案详解
- 小学生拗九节课件
- 《智能制造技术基础》课件-第2章 智能系统方案与设计
- 人教版PEP小学五年级英语下册全册教案(含计划)
- 2025年幼儿园膳食工作计划
评论
0/150
提交评论