世界银行-了解渔业和水产养殖在碳封存中的作用(英)_第1页
世界银行-了解渔业和水产养殖在碳封存中的作用(英)_第2页
世界银行-了解渔业和水产养殖在碳封存中的作用(英)_第3页
世界银行-了解渔业和水产养殖在碳封存中的作用(英)_第4页
世界银行-了解渔业和水产养殖在碳封存中的作用(英)_第5页
已阅读5页,还剩84页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Authorized

PublicDisclosure

UnderstandingtheRoleofFisheriesandAquaculturein

CarbonSequestration

June2024

PublicDisclosureAuthorized

PublicDisclosureAuthorized

©2024InternationalBankforReconstructionandDevelopment/TheWorldBank

1818HStreetNW

Washington,DC20433

Telephone:202-473-1000

Internet:

ThisworkisaproductofthestaffoftheWorldBankwithexternalcontributions.Thefindings,interpretations,andconclusionsexpressedinthisworkdonotnecessarilyreflecttheviewsofTheWorldBank,itsBoardofExecutiveDirectors,orthegovernmentstheyrepresent.

TheWorldBankdoesnotguaranteetheaccuracy,completeness,orcurrencyofthedataincludedinthisworkand

doesnotassumeresponsibilityforanyerrors,omissions,ordiscrepanciesintheinformation,orliabilitywithrespecttotheuseoforfailuretousetheinformation,methods,processes,orconclusionssetforth.Theboundaries,colors,denominations,andotherinformationshownonanymapinthisworkdonotimplyanyjudgmentonthepartofTheWorldBankconcerningthelegalstatusofanyterritoryortheendorsementoracceptanceofsuchboundaries.

NothinghereinshallconstituteorbeconstruedorconsideredtobealimitationuponorwaiveroftheprivilegesandimmunitiesofTheWorldBank,allofwhicharespecificallyreserved.

RightsandPermissions

Thematerialinthisworkissubjecttocopyright.BecauseTheWorldBankencouragesdisseminationofitsknowledge,thisworkmaybereproduced,inwholeorinpart,fornoncommercailpurposesaslongasfullattributiontothisworkisgiven.

Anyqueriesonrightsandlicences,includingsubsidaryrights,shouldbeaddressedtoWorldBankPublications.,TheWorldBank,

1818HStreetNW,Washington,DC20433,USA;fax202-522-2625;email:pubrights@.

Attribution—Pleasecitetheworkasfollows:WorldBank.2024.UnderstandingtheRoleofFisheriesandAquacultureinCarbonSequestration.Washington,DC:WorldBank.

Coverphoto:©SeanStiengenger/SUsedwithpermissionofShutterstock.Furtherpermissionrequiredforreuse.

Acknowledgements

ThisworkwasfundedbythePROBLUETrustFund,andMiquelOrtega,VillyChristensen,JeroenSteenbeekandMartaCollatEcopathInternationalInitiative(EII),Barcelona,Spainpreparedthereport.

WhitePaper

UnderstandingtheRoleofFisheriesandAquacultureinCarbonSequestration

1

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

Contents

EXECUTIVESUMMARY 3

GLOSSARY 4

1.METHODS&SCOPE 5

2.INTRODUCTIONTOTHEBIOLOGIALPUMP 6

3.MODELINGTHEFISHCARBONPUMP 10

3.1Metabolic'production'processes 10

3.3definitionofkeystocksandflows 11

3.4Metabolic'production' 12

3.4.1Livingbiomass 16

3.4.2CarcassProduction 17

3.5biocheMicaltransforMations 18

3.6phyicaltransports 21

3.6.1.Fishactiveverticaltransport 21

3.6.2Watermassflows 21

3.7MobiledeMersalfishinggears-carbonsediMentinteractions 23

3.8Marinebenthicproducercarbonsequestraton 26

4.ICESWORKSHOPONASSESSINGTHEIMPACTOFFISHINGONOCEANICCARBON 29

4.1carbonpuMp 29

4.2fishingfleeteMissions 32

4.3fishingiMpacts 32

4.4furtherwork 32

5.RELEVANTPOLICYINITIATIVES 33

5.1unitedkingdoM 33

5.2europenaunion 33

5.3internationalcouncilfortheexplorationoftheseas 33

6.CONCLUSIONS 34

7.RECOMMENDATIONSANDNEXTSTEPS 36

7.1digitalresarchplatforM 36

7 1.1Quantifyfishandfisheriescarbonflows..........................................................................................................36

7.1.2Macroalgaldynamics 37

7.1.3Interactingwiththeenvironment 37

7.1.4Developmenttimelineandwiderimpact 37

7.2standardizingthedialogue 37

REFERENCES 38

2

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

Figures

Figure1:Mainprocessesregulatingthemarinecarboncycling(reproducedfromLutzandMartin,2014) 6

Figure2:Mainpathwaysandprocessesofthebiologicalpumpwithaspecificfocusonfish 8

Figure3:Modelsneededtoquantifythebiologicalpumpcarbonsequestrationofmarineecosystems 9

Figure4:Directandindirectimpactsoffishingoncarbonsinkdeadzones 11

Figure5-Fishandfisheriescarbonfluxscheme 12

Figure6-ConceptualviewoftheoceanicCaCO3cycle 15

Figure7-Simplifiedschemeoftheglobalcarboncycle.N 18

Figure8:Top-Mainfluxesandcarbonbudget;knowledgegapsandresearchpriorities 24

Figure9:Conceptualdiagramofthepathwaysforexportandsequestrationofmacroalgalcarbon 26

Figure10:Macroalgalcarbonsequestrationscheme 27

Tables

Table1:Sequestrationandsequestrationtimeofthebiologicalpumppathways 7

Table2:Productiontable 13

Table3:Remineralizationrates 19

Table4:Sinkingratesreferencevaluesforfishandzooplanktonfecalpelletsandcarcasses 19

Table5:Biochemicaltable 22

Table6:Physicaltransporttable 22

Table7:Keyresuspensionvariables 23

Table8:Linkbetweenseabedsedimentorganiccarbonandmobiledemersalfishing 25

Table9-Marinemacroalgaereferencevalues.(AdaptedfromKrause-JensenandDuarte,2016) 27

Table10:Summaryofkeyvariablesofbiologicalcarbonpumpmodelling,andwhytheymatter 30

Table11:Riskassessmentandconfidenceassessmentofenvironmentalfactorsgoverningseabedcarbon

remineralizationandstorage 31

3

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

EXECUTIVESUMMARY

Theoceanplaysacrucialroleinregulatingtheclimatebyabsorbingexcessiveheatandcarbondioxideemissions.Inadditiontosolubilityandthephysicalpump,thebiologicalpumpisincreasinglyacknowledgedasavitalcomponentofoceanecosystemservices.Marinelifecontributestotheabsorptionofatmosphericcarbonandsequestersitin

themarineenvironmentthroughvariousprocesses,withsequestrationoccurringfortimeperiodsrangingfromdailyprocessestothousandsofyears.

Inthiscontext,thereisagrowinginterestamongboththescientificcommunityandawidenetworkofstakeholderstoenhanceunderstandingandmodelingcapabilitiesconcerningfishandfisheries’carbonsequestrationprocesses.Overthepastfewdecades,significantprogresshasbeenmadeincomprehendingandcharacterizingtheseprocessesfor

theopenocean,resultinginabroadandexpandingliteraturewithsubstantialinformationonmanykeyparameters.Nonetheless,therearestillsignificantknowledgegaps,especiallyforcoastalandshelfareas,andthescientific

communityisactivelystrivingtoestablishacomprehensiveconsensusonessentialelementsrequiredforaccuratelyevaluatingtheeffectsoffishingactivitiesandpoliciesonmarinecarbonsequestration.

ThisASAsoughttoaddressthedevelopmentchallengeofcomprehensivelyquantifyingthecarbonsequestration

attributabletoimprovedfisheriesmanagementandaquaculture.ItfocusedondeliveringawhitepaperthatdescribesexistingandpotentialGHGaccountingmethodstoinformclimate-mitigationco-benefitsassessmentsofimprovedfisheriesmanagementandaquacultureproductioninvestmentsforamorecomprehensiveestimate.Theoutcomesofthisworkculminatedinawhitepaperwhichreliesonadetailedliteratureandstakeholderconsultationstoassessthepossibilityofenhancingexistingmodelstoovercometheidentifiedknowledgelimitationsinordertofurtherourknowledgeonhowtobettercapture/estimateclimate-mitigationco-benefitsfromimprovedfisheriesmanagementandseaweedproduction.

Thiswhitepaperprovidesthecurrentstateofscientificunderstandingofthefield,andsuggestsnextstepsforwardintermsofhowmodelingcancontributetofillingthisgap.Thereportisstructuredtosupportthefuturedevelopmentorenhancementofmodels,featuringamapofthekeystocksandflows,ananalysisofhowfishtransformand‘produce’carbon,anexplorationofthecarbonbiochemicaltransformationsinthemarineenvironment,andanexamination

ofphysicaltransportwithinthemarineecosystem.Additionally,itincludesdedicatedsectionsontheimplications

ofsedimentinteractionswithmobiledemersalfishinggearsforcarbonsequestration,thesignificanceofmarine

macroalgae-kelpecosystemsinthebiologicalcarbonpump,andnoteworthypolicyinitiativesrelatedtomarinecarbonsequestration.

Theresearchconductedhereidentifiedgeneralgaps,suchastheneedtobettercharacterizehowdifferentfish

contributetoandconsumethevariouscarbonflowsidentifiedinthemarinerealm,ortheneedtobettercharacterizetheinterrelationbetweentrawlingactivitiesandsedimentaryecosystems.Specificdifficultieshavebeenidentified

arisingfromthefactthatmostfishingactivitiestakeplaceonthemarineshelf,wherekeyphysicochemicaland

biologicalprocessesareoftenmorecomplexthanintheopenoceanwherecarbonflowsarebetterunderstood,leadingtoahigherlevelofcomplexityinevaluatingcarbonsequestrationtimesincoastalareas.

Thiswhitepaperconcludeswithasummaryhowexistingmodelscouldbeenhancedtoovercomesomeoftheidentifiedknowledgelimitations.Toaccomplishthis,thedevelopmentofcoupledfood-webmodelswithcarbonsequestration

modelsisproposed,aimingtoattainamorerealisticunderstandingoftheimplicationsoffishingactivitiesforcarbonsequestration.Inthefinalsection,thisvisioniselaboratedonwithrecommendationsfornextsteps.

4

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

GLOSSARY

AbbreviationDefinition

ACMCAmorphouscalcium–magnesiumcarbonate

ARCaudalfinaspectratio

CDRCarbondioxideremoval

CIConservationInternational

DICDissolvedinorganiccarbonDVMDiurnalverticalmigrationDOCDissolvedorganiccarbon

EBFMEcosystem-basedfisheriesmanagement

EBMEcosystem-basedmanagement

EwEEcopathwithEcosimfoodwebmodellingapproachHMCHighmagnesiumcalcite

IPCCIntergovernmentalPanelonClimateChange

LDOCLabileDOC

LMCLowmagnesiumcalcite

MHCMonohydrocalcite

NPZDNutrient,Phytoplankton,ZooplanktonandDetritusmodel

OCOrganiccarbon

PgCPetagramofcarbon(10^15grams=1gigaton)POCParticulateorganiccarbon

RILRelativeintestinallengthtobodystandardlengthTgCTeragramofcarbon(10^12grams)

5

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

Photocredit:TheWorldBank

1.METHODS&SCOPE

Theinformationprovidedinthisreporthasbeenobtainedfromfourdifferentsources:

•Aliteraturereviewwasconductedusinga“WebofScience”databasesearchinMarch2023withtwosetsof

searchterms:a)‘carbonsequestration’and‘biologicalpump’),andb)‘carbonsequestration’&‘fish’.Atotalof909referenceswereidentifiedandafterreviewingthetitleandabstracts,50paperswereselectedforacomplete

review.

•Theliteratureusedforthepresentationsoftheonline“Fish,Fisheries,andCarboninternationalworkshop”,heldlast6th,8thand9thofMarch2023,organizedbythe“OceanCarbon&Biogeochemistryprogram”andthediscussionsthattookplaceattheworkshop.

•Reviewoftheliteratureusedforthepresentationsofthe“WorkshoponAssessingtheImpactofFishingonOceanicCarbon”,held25-27April,2024,atICES,Copenhagen.Supplementedbyresultsfromdiscussionsattheworkshopandthedraftworkshopreport.

•Aroll-ontechniquewasusedtoreviewadditionalscientificpapersbasedonthereferencesofthepreviousmentionedpapers.Atotalof90additionalpaperswerereviewed.

Thisreportreviewsthecurrentscientificunderstandingoftheroleoffishinmarinecarbonsequestrationandhow

fishingaffectssequestrationprocesses.Thereviewexcludescarbonsequestrationmechanismsassociatedwithcoastalvegetationsystemssuchasmangroveforests,tidalmarshesandbenthicprimaryproducers,whichhavealreadybeenaddressedbroadlyintheliterature(Macreadieetal.,2021;Rosentreteretal.,2023;Zhongetal.,2023).Additionally,thereviewdoesnotincludethecarbonsequestrationprocessesassociatedwithaquacultureandanthropogenicocean-

basedcarbondioxideremoval(CDR)projects(Leblingetal.,2022).

6

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

2.INTRODUCTIONTOTHEBIOLOGIALPUMP

Theoceanplaysacriticalroleinregulatingtheclimatebyabsorbingexcessheatandcarbondioxideemissions.Overthelast60years,theoceanhasstoredapproximately23±5%ofanthropogeniccarbonemissions.Furthermore,sincethe1970s,theoceanhasabsorbedover90%oftheEarth’sexcessheat,accumulatedintheEarth’ssystem(IPCC,2021).

Theamountofcarbondioxideemittedintotheatmospherethatremainsdissolvedinseawaterisinfluencedbythreeinterlinkedprocesses:thesolubilitypump,whichisdependentonphysicochemicalconditionssuchasseawater

temperature,salinity,andtotalalkalinity;thephysicalpump,whichinvolveswaterfluxesandadvective-diffusivetransport;andthebiologicalpump(Figure1).

Figure1:Mainprocessesregulatingthemarinecarboncycling(reproducedfromLutzandMartin,2014)

Traditionally,ocean-relatedclimatechangeresearchhasfocusedonthesolubilitypumpandphysicalpump.

However,inrecentdecades,therehasbeenagrowingrecognitionoftheimportanceofthebiologicalpumpand

itsinterconnectionswiththesolubilityandphysicalpumps.Itisnowunderstoodthatthebiologicalpumpcanplay

asignificantroleintheoceansinkofanthropogeniccarbon,particularlyincertainregionalcontexts.Asaresult,

attentiononthebiologicalpumphasincreasedandislikelytocontinuetobeakeyareaofresearch(IPCC,2021;Wilsonetal.,2022).

Thebiologicalpumpreferstothevariousprocessesthattransferorganicmatterproducedbyphytoplanktonnetprimaryproductionfromthesurfaceoceantodepth,whereitcanbesequesteredformonthstomillennia.Whileresearchisongoingtoquantifythedifferentpathwaysthatcontributetocarbonsequestration,theirrelative

importanceisnotfullyunderstood(Nowickietal.,2022).

7

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

Thebiologicalpumpreferstothevariousprocessesthattransferorganicmatterproducedbyphytoplanktonnetprimaryproductionfromthesurfaceoceantodepth,whereitcanbesequesteredformonthstomillennia.Whileresearchisongoingtoquantifythedifferentpathwaysthatcontributetocarbonsequestration,theirrelative

importanceisnotfullyunderstood(Nowickietal.,2022).

Thethreemainpathwaysofthebiologicalpumparethe‘gravitationalpump’,the‘verticalmigrationpump’andthe

‘mixingpump’(Figure1).The‘gravitationalpump’involvesthepassivesinkingofParticulateOrganicCarbon(POC)in

theformofaggregates,carcasses,andfecalpellets.The‘verticalmigrantpump’referstotheactivetransportofcarbonbyverticallymigratingzooplankton,fish,andothermarineanimals.Last,the‘mixingpump’includesthephysical

transportofbothsuspendedPOCandDissolvedOrganicCarbon(DOC)bymarinewaterfluxes.

Carbondioxideisfixedintoorganiccarbon(OC)byphytoplanktonintheeuphoticzone,whereitispartiallyincorporatedintothemarinefoodweb.Onceconsumed,itcanbeinvolvedinexcretion,exudation,respiration,consumption,

aggregation,solubilizationandgrazingprocesseswherebacteria,zooplankton,fishandothermarineanimalsare

involved(Figure2).Whilemostoftheorganicparticlesarerecycledinsurfacewaters,asmallfractionsinksina

proportionthatiscalled‘exportrate’fromtheeuphoticzone,themixedsurfacelayer,oracrossanarbitraryhorizonoftensetaround100meters.Thebiologicalpumpexportsapproximately10(PgCyr−1(Nowickietal.,2022)tothe

deeperocean,withtheestimatedfish-basedcontributionbeingaround1.5±1.2(PgCyr−1(Sabaetal.,2021).However,itisimportanttonotethatthereisahighuncertaintyinestimationoffishexportflux,aggravatedbyfishhavingthehighestbiomassesincoastalandshelfareaswhereknowledgeaboutcarbonsequestrationiscursoryatbest.

ThesinkingfluxofPOCexportedfromthesurfaceoceanisrapidlyattenuatedduetoacombinationofabioticandbioticprocesses.Fragmentationbywaterturbulence,andzooplanktonandmicrobialactionconvertlarge,rapidlysettling

particlesintosmaller,moreslowlysettlingparticles,therebyreducingtheverticalfluxofPOC.Bioticprocessessuch

asmicrobialdegradationandconsumptionbyorganismsreducetheamountofsinkingPOCandsoreducetheflux,

convertingpartofittoDissolvedInorganicCarbon(DIC)throughrespiration(Countrymanetal.,2022).Theamountof

POCreachingthedeepoceanisonlybetween0.2and2%oftheexportedcarbon,thatis(0.02-0.2)PgCyr−1,somostofthesequesteredoceaniccarbonisDIC(Siegeletal.,2023).Thedepthandlocationatwhichorganiccarbonistransportedandremineralized,andthewaterfluxesinthearea,determinehowlongthecarbonissequesteredintheocean(Saba

etal.,2021).Ingeneral,carbonissequesteredforlongerthanayearbyparticlesthatpenetratebeneaththewintertimemixedlayer,andforuptocenturiesbyparticlesthatreachdeepwatermassesbelow1000m(Boydetal.,2019).

AccordingtoNowicki(2022),theannualglobalcarbonsequestrationbythebiologicalpumpis1293(1302-1281)PgC,withanaveragesequestrationtimeof127(133-122)years,whichiscoherentwiththeinventoryofDIC(Carteretal.,2021)fromrespiredorganicmatter:1300(±230)PgC,beingthegravitationalpumpthemoreimportantpathway(Table1).

Table1:Sequestrationandsequestrationtimeofthebiologicalpumppathways

Sequestration(PgC/year)

Sequestrationtime

(years)

Source

Mixingpump

102(100-106)

54(48-64)

Nowickietal.,2022

Gravitationalpump:aggregatePOC

207(98-293)

185(170-202)

Nowickietal.,2022

Gravitationalpump:fecalpelletPOC

833(746-943)

136(129-143)

Nowickietal.,2022

Migrantpump

150(83-188)

150(94-213)

Nowickietal.,2022

Undifferentiated

1300(±230)

Carteretal.,2021

~100m

~1000m

Mixingpump

DOCandPOCphysicaltransport

DOCandPOCphysicaltransport

DOCandPOCphysicaltransport

Photosynthesis-DIC

Bacteria

Phytoplankton

Fish

Fishfecalpellets

-fast

verticalspeed

Fish

RespirationDIC

Bacteria

Zooplanktonfecalpellets

RespirationDIC

Gravitationalpump(passivepump)

Respiration-DIC

Zooplankton

Sinking

phytoplankton

&

zooplankton

carcases

DOCandPOCproductionAggregationsZooplanktonfecalpellets

sinkingfsh

Aggreationsandfecalpellets

carcasses

Solubilization

&

disaggregation

Consumption

Zooplankton

DOCandPOC

Uptake

Fishfecalpellets

Solubilization

&

disaggregation

Bacteria

Uptake

DOCandPOC

Fish

Metazoans

Whales

-Largepelagicfsh

-Tactilepredatorsi.e.jellyfsh-Mesopelagicfsh

BathypelagicFish

Verticalmigrationpump(activepump)

Zooplankton

-Foragefish

-meso-

zooplankton-macro-

zooplankton

Depth

Euphoticzone

sequestrationtime1-10y

sequestrationtime10-100y

Mesopelagiczone

sequestrationtime100-1000y

Deepseazone

Figure2:Mainpathwaysandprocessesofthebiologicalpumpwithaspecificfocusonfish.DOC=Dissolvedorganiccarbon.POC=particulateorganiccarbon.DIC=dissolvedinorganiccarbon.Yellow=fishrelated(AdaptedfromSiegeletal.2021)

9

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

Thequantificationofcarbonfluxesandsequestrationprocessesintheoceanischallengingduetolimitationsin

theavailabledataforeverystepofthemarinecarboncycle.Thevariabilityoftheseprocessesunderdifferent

environmentalconditionsaddsfurthercomplexity.Additionally,thedifficultyofintegratingdifferenttypesofmodels,whichmayusedifferentassumptionsandinputdata,canleadtoadditionaluncertaintyinthefinalestimates(Figure3).

Metabolic

“production”model

•DOC,DIC,POCand

carbonatesproduction•Carcassesproduction

Fishingactive

gearsinteractions

withsediments

•Physicalprocesses

•Ecologicalimplications

Physicaltransport

•Watertransportservices

•Fishverticalmovements

Ecosystemmodel

•Mutlispeciesdynamicsandinteractions

Biochemicalmodel

•Particaltransformationsinthewatercolumn

•Particaltransformationsinthesediments

•Dissolved

transformations

Environmental

conditions

•Temperature

•Salinity

......

Figure3:Modelsneededtoquantifythebiologicalpumpcarbonsequestrationofmarineecosystems.

10

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

3.MODELINGTHEFISHCARBONPUMP

Asdescribedabove,phytoplankton,zooplanktonandbacteriaplayamajorroleinthefunctioningofthebiologicalpump,butinadditionmarinevertebrates,andespeciallyfish,throughmultipleprocessesalsohavearoleinmarinecarbonsequestration.

3.1Metabolic'production'processes

•POCproduction:Fisheatandrepackagefoodintocarbon-richfecalpelletsthatsinkrapidlythroughthewatercolumnuntilapartreachesthebottomoftheocean.Atthesametime,fishalsocontributetoPOCdegradationthroughconsumptionprocesses.

•DOCandDICproduction:Fish,whenalive,produceDOC,andthroughrespirationDIC,thatisintegratedinthewatercolumn,wherebiologicalandphysicalprocesseswilldeterminatetheirstoragetimeintheocean.

•Carbonateproduction:Fishproducecarbonate(CaCO3)1asaby-productoftheosmoregulationprocess.

•Carcassproduction:Whenfishandotherlargemarinevertebratesdie,theircarcassessinkrapidlytotheseafloor,wherethecarbonbiomassistransformed(andpartiallypredatedbyotherorganisms)andinpartpotentially

buried.

•Livingbiomasscarbon:Alllivingthingsarepartiallymadeofcarbonandthusserveascarbonreservoirsthroughtheirlifespans.Thelargerandmorelong-livedanorganismis,andthelargerapopulationis,themorecarbonisstored.

•Otherindirectrelatedprocesses:

°Fertilizingspecies:manymarinevertebrates,suchaswhales,haveactivehorizontalandverticalmovements.Vertically,whalesdivetofeedandreturntothesurfacetobreathe.Whileatthesurface,theyreleasebuoyantfecalplumesthatarerichinnutrientsthatphytoplanktonneedforgrowth,stimulatingcarbondioxide

capture.Horizontally,manywhalespeciesundertakeseasonalmigrationsfromnutrient-richfeedinggroundstonutrient-poorbreedinggrounds.Atthesebreedinggrounds,whalesreleasenitrogen-richurea,whichcanpromotephytoplanktongrowthandstimulatecarbondioxidecapture.

°Coastalcascadecarbon:Marinepredatorshelpmaintainthecarbonstoragefunctionofcoastalvegetationbykeepingherbivorepopulationsincheck.Thisprocesscanberelevantforcoastalbluecarbonandseaweed(Atwoodetal.,2015).

°Biomixingcarbon:Theswimmingmovementsofmarineanimalscanstirupnutrientstowardssurfacewaters,whichphytoplanktoncanusetogrow,absorbingcarbonintheprocess.

Theprocessesdescribedhavedifferentlevelsofuncertaintyandrelevanceforcarbonsequestration.

3.2Fisheries

Unlikefarming,whichisgenerallynotconsideredacarbonsinkunlessspecificallydesignedtocaptureexcesscarbon(e.g.,Leifeld2023),fisheriesdirectlyandindirectlyinfluenceanumberoflarge-scale,long-termoceaniccarbon

sequestrationpathways(Krabbeetal,2022)andtherefore,fisheriesmanagementmayaidtoprovidesomelevelofcontroloncarbonsequestration.

Fishingactivitiesinteractdirectlywiththeprocessesdescribedabovebyextractingbiomassandchangingthefoodwebstructureandfunctioningofecosystems.Asaconsequence,fisheriesnotonlyaffectvolumesoflivingbiomassorcarcasses,butaffectfishPOC,DOCandDICtotalproductionandtheindirectprocessdescribedearlier.

1Atlong-termcarbonatedilutesandbecomesdissolvedinorganiccarbon/articles/s41561-021-00743-y

11

UnderstandingtheRoleoftheFisheriesandAquacultureinCarbonSequestration

Further,somefishingpractices,suchasbottomtrawlinghavedirectimpactsontheseafloorandcanpotentially

reintroducecarboninthesedimentintothewatercolumn,therebyimpactingcarbonsequestrationbyalteringtheseabottom(Figure4).

Figure4:Directandindirectimpactsoffishingoncarbonsink:1)Fertilizingspecies,2)egestionoffast-sinkingcar-

bon-richfecalpellets,3)harvestinglow-midtrophiclevelpellet-producingspecies,4)removingspecieslivingneartheseabedwherethesinkofcarbonwillbeshort,5)sedimentdisturbancefromgroundfishharvesting,6)removingresi-

dentormigratorymesopelagicspeciesthatcontributetothecarbonsink,7)removinglargefishandwhalesreducing

largefallsofdeadorganicmattertothedeepseaandsediment.Indirectimpacts:8)causingtrophiccascadeswhen

removinghightrophiclevelspeciesimpactinglowtrophiclevelcommunitiesthatsinkcarbon,9)removingpreyitemsforfertilizingspecies,10)killingpredatorsthatmayotherwisefertilizetheoceansandmaintainabalancedfoodweb,11)releaseofdiscardswhichcouldcauselocalizeddeadzones(AdaptedfromCavanandHill2022)

Thefollowingsectionexploresthemaindirectprocessesbywhichfisheriescontributetocarbonsequestration.Itdescribestheseprocesses,reportssomekeyreferencevalues,andpointsoutsomeofthemaindiscussionsanduncertainties.

3.3deFinitionoFkeystocksandFlows

Figure5showsasimplifiedgeneralschemeofthedifferentsectionsthatafish-carbonmodelrequires.Thescheme

assumesthebiomassdistributionisknownforthekeyfishgroupsofspeciesinanecosystemthatcanbeobtained,forexamplefromafood-webmodel.

12

UnderstandingtheRoleoftheFisheriesa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论