




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省秦皇岛市卢龙中学2022-2023学年高三下练习题(三)数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是()A. B.C. D.2.集合的真子集的个数是()A. B. C. D.3.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为()A. B. C. D.4.函数的图象可能是()A. B. C. D.5.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A. B. C. D.6.函数的大致图象是A. B. C. D.7.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.8.已知三棱锥且平面,其外接球体积为()A. B. C. D.9.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为()A. B. C. D.10.已知点,若点在曲线上运动,则面积的最小值为()A.6 B.3 C. D.11.已知复数,则()A. B. C. D.212.若为纯虚数,则z=()A. B.6i C. D.20二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足,则的最小值为________.14.已知函数若关于的不等式的解集为,则实数的所有可能值之和为_______.15.正方形的边长为2,圆内切于正方形,为圆的一条动直径,点为正方形边界上任一点,则的取值范围是______.16.若复数(是虚数单位),则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).(1)分别求,关于x的函数关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.18.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.19.(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.20.(12分)如图,在中,,,点在线段上.(1)若,求的长;(2)若,,求的面积.21.(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合..(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由.22.(10分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,若函数在上没有零点,∴,∴,,解得,又,解得,当k=0时,解,当k=-1时,,可得,.故答案为:A.【点睛】本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.2.C【解析】
根据含有个元素的集合,有个子集,有个真子集,计算可得;【详解】解:集合含有个元素,则集合的真子集有(个),故选:C【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有个元素的集合,有个子集,有个真子集,属于基础题.3.B【解析】
先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.【详解】双曲线1(a>b>0)的渐近线方程为y=±x,∵直线l的倾斜角是渐近线OA倾斜角的2倍,∴kl,∴直线l的方程为y(x﹣c),与y=±x联立,可得y或y,∵,∴2•,∴ab,∴c=2b,∴e.故选B.【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.4.A【解析】
先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】函数的定义域为,,该函数为偶函数,排除B、D选项;当时,,排除C选项.故选:A.【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.5.C【解析】
求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论.【详解】,.若存在极值,则,又.又.故选:C.【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.6.A【解析】
利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.7.B【解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.8.A【解析】
由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.【详解】由题,因为,所以,设,则由,可得,解得,可将三棱锥还原成如图所示的长方体,则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【点睛】本题考查三棱锥的外接球体积,考查空间想象能力.9.D【解析】
连接,,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【详解】连接,,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,,在等腰中,取的中点为,连接,则,,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.10.B【解析】
求得直线的方程,画出曲线表示的下半圆,结合图象可得位于,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值.【详解】解:曲线表示以原点为圆心,1为半径的下半圆(包括两个端点),如图,直线的方程为,可得,由圆与直线的位置关系知在时,到直线距离最短,即为,则的面积的最小值为.故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.11.C【解析】
根据复数模的性质即可求解.【详解】,,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.12.C【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.5【解析】
先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。14.【解析】
由分段函数可得不满足题意;时,,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和.【详解】解:由函数,可得的增区间为,,时,,,时,,当关于的不等式的解集为,,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点.综上可得的所有值的和为1.故答案为:1.【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题.15.【解析】
根据向量关系表示,只需求出的取值范围即可得解.【详解】由题可得:,故答案为:【点睛】此题考查求平面向量数量积的取值范围,涉及基本运算,关键在于恰当地对向量进行转换,便于计算解题.16.【解析】
直接根据复数的代数形式四则运算法则计算即可.【详解】,.【点睛】本题主要考查复数的代数形式四则运算法则的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),.,.(2)当百米时,两条直道的长度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得关于x的函数关系式;在和中,利用余弦定理,可得关于x的函数关系式.方法二:在中,可得,则有,化简整理即得;同理,化简整理即得.(2)由(1)和基本不等式,计算即得.【详解】解:(1),是边长为3的等边三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道长度关于x的函数关系式为,.在和中,由余弦定理,得①②因为M为的中点,所以.由①②,得,所以,所以.所以,直道长度关于x的函数关系式为,.法2:因为在中,,所以.所以,直道长度关于x的函数关系式为,.在中,因为M为的中点,所以.所以.所以,直道长度关于x的函数关系式为,.(2)由(1)得,两条直道的长度之和为(当且仅当即时取“”).故当百米时,两条直道的长度之和取得最小值百米.【点睛】本题考查了余弦定理和基本不等式,第一问也可以利用三角形中的向量关系进行求解,属于中档题.18.(1);(2).【解析】
(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,,在梯形中,,则,,,,所以,;(2)取中点,连接、,过点作,则,作于,连接.为的中点,且,,且,所以,四边形为平行四边形,由于,,,,,,,为的中点,所以,,,同理,,,,平面,,,,为面与面所成的锐二面角,,,,,则,,,平面,平面,,,,面,为与底面所成的角,,,.在中,.因此,与平面所成角的正弦值为.【点睛】本题考查利用线面平行的性质求参数,同时也考查了线面角的计算,涉及利用二面角求线段长度,考查推理能力与计算能力,属于中等题.19.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由题意可得,,,解得即可求出椭圆的C的方程;(Ⅱ)由已知设直线l的方程为y=k(x-2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,解得.由方程组消去y,解得,由,得到,转化为关于k的不等式,求得k的范围.【详解】(Ⅰ)因为过焦点且垂直于长轴的直线被椭圆截得的线段长为3,所以,因为椭圆离心率为,所以,又,解得,,,所以椭圆的方程为;(Ⅱ)设直线的斜率为,则,设,由得,解得,或,由题意得,从而,由(Ⅰ)知,,设,所以,,因为,所以,所以,解得,所以直线的方程为,设,由消去,解得,在中,,即,所以,即,解得,或.所以直线的斜率的取值范围为.【点睛】本题考查在直线与椭圆的位置关系中由已知条件求直线的斜率取值范围问题,还考查了由离心率求椭圆的标准方程,属于难题.20.(1)(2)【解析】
(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积.【详解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面积.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 壁上起重机企业数字化转型与智慧升级战略研究报告
- 可编程控制系统(PLC系统)企业县域市场拓展与下沉战略研究报告
- 绢纺粗纱机企业数字化转型与智慧升级战略研究报告
- 考勤设备企业县域市场拓展与下沉战略研究报告
- 胶合板制造企业ESG实践与创新战略研究报告
- 中碱玻璃球企业数字化转型与智慧升级战略研究报告
- 电力环保设备企业县域市场拓展与下沉战略研究报告
- 功能性填料企业县域市场拓展与下沉战略研究报告
- 冷轧薄板(外购再加工)企业县域市场拓展与下沉战略研究报告
- 2025-2030中国天然和人造砂行业市场发展趋势与前景展望战略研究报告
- 2024上半年浙江杭州市临平区机关事业单位编外用工招聘61人历年高频500题难、易错点模拟试题附带答案详解
- 2024中考英语必考1600词汇分类速记表
- 小学语文课程方案2022
- 幼儿园课件:《动物的尾巴》
- Q∕GDW 1572-2014 计量用低压电流互感器技术规范
- 2022年版初中物理课程标准解读-课件
- 河南省洛阳市新安县2023-2024学年八年级下学期4月期中道德与法治试题
- DB11-T 2207-2023 市政桥梁工程数字化建造标准
- 校园足球教育知识讲座
- 2022-2023学年湖南省长沙市重点中学高一下学期期中考试化学试卷
- 硼元素植物研究报告总结
评论
0/150
提交评论