




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页重庆城市职业学院《展示空间设计》
2023-2024学年第二学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的车牌识别任务中,需要从车辆图像中准确提取车牌号码。假设车牌存在倾斜、变形和光照不均等问题。以下哪种车牌识别方法在应对这些挑战时表现更为出色?()A.基于字符分割的车牌识别B.基于模板匹配的车牌识别C.基于深度学习的车牌识别D.基于特征提取的车牌识别2、计算机视觉中的目标计数任务,例如统计图像中物体的数量。假设要计算一张果园图片中苹果的数量,以下关于目标计数方法的描述,正确的是:()A.基于传统的图像分割和对象识别方法可以准确快速地完成目标计数B.深度学习中的回归模型不适合用于目标计数任务C.目标的大小、形状和分布对计数结果没有影响D.结合深度学习的密度估计方法能够有效地实现目标计数3、在计算机视觉的全景图像生成任务中,将多幅局部图像拼接成一幅全景图像。假设要生成一个城市景观的全景图像,以下关于全景图像生成方法的描述,哪一项是不正确的?()A.首先需要对局部图像进行特征提取和匹配,找到它们之间的对应关系B.可以使用图像变形和融合技术来消除拼接处的缝隙和色差C.全景图像生成不受拍摄角度、光照条件和相机参数的影响,能够完美拼接任何图像D.基于深度学习的方法能够自动学习全景图像的生成规律,提高拼接效果4、在一个基于计算机视觉的工业质量检测系统中,需要检测产品表面的微小缺陷,如划痕、凹坑等。由于缺陷的尺寸较小且形态多样,以下哪种图像处理算法可能对缺陷检测最为有效?()A.边缘检测算法B.形态学操作C.阈值分割算法D.霍夫变换5、在计算机视觉的图像风格迁移任务中,将一张图像的风格应用到另一张图像上。假设要将一幅油画的风格迁移到一张照片上,以下关于图像风格迁移方法的描述,正确的是:()A.基于手工特征提取和风格转换的方法能够实现自然逼真的风格迁移B.深度学习中的生成对抗网络(GAN)在风格迁移中无法生成多样化的风格效果C.图像的内容和风格可以完全独立地进行处理,互不影响D.考虑图像的局部和全局特征以及语义信息能够提升风格迁移的质量6、在计算机视觉的图像超分辨率任务中,假设要将一张低分辨率图像恢复为高分辨率图像。以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的方法简单快速,但恢复出的图像细节不够清晰B.基于深度学习的方法能够生成逼真的高分辨率图像,但需要大量的训练数据和计算资源C.图像超分辨率技术可以无限制地提高图像的分辨率,不受硬件限制D.所有的图像超分辨率方法都能够完全恢复出原始高分辨率图像的所有信息7、在计算机视觉的立体视觉任务中,通过两个或多个相机获取的图像来计算深度信息。以下哪种立体匹配算法在精度和效率方面可能表现较好?()A.基于区域的匹配算法B.基于特征的匹配算法C.基于深度学习的匹配算法D.以上都是8、当利用计算机视觉进行图像语义分割任务,例如将图像中的不同物体分割出来,以下哪种深度学习架构可能在分割精度和效率方面表现较好?()A.FCNB.U-NetC.SegNetD.以上都是9、在计算机视觉的图像生成任务中,假设要生成逼真的人脸图像。以下关于生成模型的架构选择,哪一项是需要特别关注的?()A.选择传统的多层感知机(MLP)架构B.采用生成对抗网络(GAN)架构,通过对抗训练生成高质量图像C.运用卷积神经网络(CNN)架构,但不使用池化层D.构建循环神经网络(RNN)架构,处理图像的序列信息10、计算机视觉中的视觉跟踪在监控、机器人导航等领域有广泛应用。假设一个机器人需要跟踪一个移动的物体,同时适应物体的外观变化和环境干扰。以下哪种视觉跟踪方法能够提供较好的长期跟踪性能和鲁棒性?()A.基于核相关滤波的跟踪方法B.基于深度学习的孪生网络跟踪方法C.基于粒子滤波和特征匹配的跟踪方法D.基于背景减除和运动估计的跟踪方法11、在计算机视觉的行人检测任务中,假设要在一个拥挤的街道场景中准确检测出行人,场景中存在光照变化、人群遮挡和复杂背景。以下哪种特征表示方法在这种情况下可能更具鲁棒性?()A.基于形状的特征,如行人的轮廓B.基于颜色的特征,如行人衣服的颜色C.基于深度学习的特征,通过卷积神经网络自动学习D.不提取任何特征,直接对原始图像进行检测12、在计算机视觉的图像检索任务中,需要根据用户提供的查询图像找到相似的图像。假设我们有一个大型的图像数据库,以下哪种图像表示方法能够提高图像检索的效率和准确性?()A.基于全局特征的图像表示B.基于局部特征的图像表示C.基于深度学习的图像嵌入表示D.基于颜色直方图的图像表示13、计算机视觉中的全景图像拼接是将多个视角的图像组合成一个全景图像。假设我们有一组用普通相机拍摄的场景照片,要拼接成一个无缝的全景图,以下哪个步骤对于拼接的质量影响最大?()A.特征点提取和匹配B.图像融合和过渡处理C.相机参数估计和校正D.图像的裁剪和缩放14、计算机视觉中的光流计算用于估计图像中像素的运动。假设要对一个快速运动的物体进行光流估计,同时场景中存在光照变化和噪声干扰。在这种情况下,以下哪种光流计算方法能够提供更准确和稳定的结果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法15、在计算机视觉的姿态估计任务中,例如估计人体关节的位置和姿态,以下哪种方法可能在精度和实时性之间取得较好的平衡?()A.基于模型的方法B.基于深度学习的回归方法C.基于深度学习的分类方法D.以上都不是二、简答题(本大题共4个小题,共20分)1、(本题5分)说明计算机视觉在智能灌溉中的应用。2、(本题5分)解释计算机视觉中的字符识别技术。3、(本题5分)描述计算机视觉在地质灾害监测中的应用。4、(本题5分)解释计算机视觉中的可解释性人工智能在视觉任务中的重要性。三、应用题(本大题共5个小题,共25分)1、(本题5分)基于计算机视觉的智能酒店入住系统,通过人脸识别实现快速办理入住。2、(本题5分)运用图像识别技术,检测图书馆书架上书籍的摆放顺序。3、(本题5分)设计一个基于计算机视觉的静脉识别系统。4、(本题5分)运用图像分类技术,对不同种类的宝石进行分类。5、(本题5分)使用特征提取算法,从大量的图像中筛选出相似的图像。四、分析题(本大题共4个小题,共40分)1、(本题10分)分析某摄影工作室的品牌形象设计,包括标志、宣传册和网站设计,研究如何通过视觉元素展示工作室的专业水平和独特风格。2、(本题10分)探讨某餐饮品牌的新品上市宣传视频设计,研
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 度校企合作合同书(三):人才培养与交流
- 儿童健康食品供应合同
- 医疗中心服务合同样本
- 环保工程项目内部承包合同范本
- 北京市全日制用工劳动合同模板
- 标准版租赁与购销合同范本
- 双方合作经营合同示范文本
- 城市住宅房屋买卖合同范本
- 文化机械产品用户体验评估方法考核试卷
- 工业机器人协作机器人技术考核试卷
- 动物生态学原理课件
- 华为认证 HCIA-Security 安全 H12-711考试题库(共800多题)
- 《室内环境检测》课件
- DB34-T 2286-2022安全阀在线校验规程-高清现行
- 《区域大地构造学》全套教学课件
- 接地电阻测试记录表范本
- 有限空间作业安全教育培训记录参考模板范本
- 员工技能熟练度评价
- 公司领导人员问责决定书(模板)
- 声像档案的整理103张课件
- DB51∕T 2681-2020 预拌混凝土搅拌站废水废浆回收利用技术规程
评论
0/150
提交评论