




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FinancingtheLow-Carbon
TransitioninHeavyIndustry
Report/March2024
AboutRMI
RMIisanindependentnonprofit,foundedin1982asRockyMountainInstitute,thattransforms
globalenergysystemsthroughmarket-drivensolutionstoalignwitha1.5°Cfutureandsecurea
clean,prosperous,zero-carbonfutureforall.Weworkintheworldʼsmostcriticalgeographiesandengagebusinesses,policymakers,communities,andNGOstoidentifyandscaleenergysystem
interventionsthatwillcutgreenhousegasemissionsatleast50percentby2030.RMIhasofficesinBasaltandBoulder,Colorado;NewYorkCity;Oakland,California;Washington,D.C.;andinBeijing,PeopleʼsRepublicofChina.
AboutCBI
ClimateBondsInitiativeisaninternationalorganisationworkingtomobiliseglobalcapitalfor
climateaction.Itpromotesinvestmentinprojectsandassetsneededforarapidtransitiontoa
low-carbon,climate-resilient,andfaireconomy.Themissionfocusistohelpdrivedownthecostofcapitalforlarge-scaleclimateandinfrastructureprojectsandtosupportgovernmentsseeking
increasedcapitalmarketsinvestmenttomeetclimateandgreenhousegas(GHG)emission
reductiongoals.ClimateBondsconductsmarketanalysisandpolicyresearch;undertakesmarketdevelopmentactivities;advisesgovernmentsandregulators;andadministersaglobalgreenbondStandardandCertificationscheme.
FinancingtheLow-CarbonTransitioninHeavyIndustry/2
AuthorsandAcknowledgments
Authors
RMI:ShuyiLi,WeiLi,Shutong(Lucy)Lu,PeishanWang,YujunXue,RongYan,BoyaZhang
CBI:WenhongXie,XiaoyunXu
Authorslistedalphabetically.
Contacts
ShuyiLi,sli@
Shutong(Lucy)Lu,llu@
CopyrightsandCitation
ShuyiLi,WeiLi,andShutong(Lucy)Lu,FinancingtheLow-CarbonTransitioninHeavyIndustry,RMI,CBI,2024
,/insight/financing-the-low-carbon-transition-in-heavy-industry/.
RMIvaluescollaborationandaimstoacceleratetheenergytransitionthroughsharingknowledgeand
insights.Wethereforeallowinterestedpartiestoreference,share,andciteourworkthroughtheCreative
CommonsCCBY-SA4.0licens
e./licenses/by-sa/4.0/.
AllimagesusedarefromiSunlessotherwisenoted.
Acknowledgment
Theauthorswouldliketoexpresssincerethankstothefollowingexpertsfortheirinsightandcomments:
JinlongChen,ChinaLianheEquatorEnvironmentalImpactAssessmentCo.,Ltd,GreenFinanceDepartment,GMAssistant
ManshuDeng,ClimateBondInitiative
ShujuanLiu,StructuralEngineeringandEcologicalEnvironmentalMaterialsResearchCenter,China
BuildingMaterialsIndustryPlanningandResearchInstitute,SeniorEngineerandDeputyDirector
SiboLiu,ChinaLianheEquatorEnvironmentalImpactAssessmentCo.,Ltd,GreenFinanceDepartment1GMAssistant,HeadofInternationalBusiness
ZixuanLuo,GreenHydrogenTechnologyandEconomyResearchInstitute,TsinghuaSichuanEnergyInternetResearchInstitute,ResearcherandSeniorEngineer
MatthewMacGeoch,ClimateBondInitiative
QingNi,PwCChina,Climate&SustainabilityLeaderDanQin
YongQiu,GreenLowCarbonResearchInstitute,DelongSteelGroup,DirectorJiaShi,ClimateBondInitiative
FangWang,SpecializedCommitteeonEnergyEfficiencyandInvestmentEvaluation,ChinaEnergyResearchSociety,DeputyDirector
HaiyangWang,BeijingJianlongHeavyIndustryGroupCo.,Ltd,SecretarytotheChairmanJijieWang,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences,ResearcherHuiWeng,ChinaPetroleumandChemicalIndustryFederation,SeniorEngineer
LingfengXia,IndustrialIntelligenceTechnologyCenter,ZhongcunBigDataTechnology,Director
Thecontentsofthisreportdonotrepresenttheviewsoftheaboveexpertsandinstitutions.
FinancingtheLow-CarbonTransitioninHeavyIndustry/3
TableofContents
Introduction5
Low-CarbonTransitionPathwaysforHeavyIndustryinChina9
SteelIndustry9
CementIndustry11
PetrochemicalsandChemicalsIndustry15
FinancialInstrumentstoSupportLow-CarbonTransitioninHeavy
Industry19
CapitalDemandforHeavyIndustryTransition19
FeaturesofCapitalDemandforHeavyIndustryTransition24
ExistingFinancialGuidanceandInstruments29
OverviewofTransitionFinanceDebtInstrumentsandFinancingCasesforHeavyIndustry
Companies32
NextSteps34
FurtherUnlockingthePotentialoftheGreenFinanceMarket34
SeizingtheOpportunityoftheTransitionFinanceMarket35
Appendix38
Endnotes39
FinancingtheLow-CarbonTransitioninHeavyIndustry/4
Introduction
Low-carbontransitioninheavyindustryisessentialforreachingthetemperaturegoalsetintheParis
Agreement.Achievingthistargetoflimitingthetemperatureriseto1.5°Cor2°Cabovethe
preindustriallevelrequiresnet-zeroCO2emissionswithoutrelyingoncarbonoffsetsfromlanduseinthelongterm.Itwillbecriticalforheavyindustrytotakecarbonreductioninitiativesoverthenextdecade—notonlyreducingitsownCO2emissionsandachievingearlyemissionsreductionbutalsolayingthefoundationforothersectorstoreachnet-zeroemissionsbymid-century.
Atpresent,thesteel,cement,andpetrochemicalsandchemicalsindustriesemitabout18%ofglobalCO2emissionsandconsumeabout3,300milliontonsofstandardcoalequivalent(Mtce)annuallyi—almostequaltothetotalannualnationalprimaryenergydemandoftheUnitedStates.Theenergyconsumptionofthethreeindustriesincludes2,700Mtceoffossilfuels,constitutingapproximately
82%oftheglobaltotal
.1
Clearly,thesuccessofthenet-zerotransitionofheavyindustrydependsonthetransitionawayfromfossilfuels.
·Longerassetlifespanraisestheriskofstrandingassetsfromrapidtransition.Industrialassetsgenerallyhavealifespanof30–40years.Undertherequirementforrapidtransition,theearlyretirementofexistingcapacitywillcausesignificanteconomiccosts.Therefore,newer
industrialcapacityresultsinalock-ineffectunlessthereisfurthersubstantialinvestmentforretrofittingfacilities.
·Enablingdeeperemissionsreductionsinheavyindustrywillrequiresignificantinvestmentininnovativecarbon-reducingtechnologies.Unlikebuildings,transport,andindustryingeneral,heavyindustryhaslimitedpotentialtoreduceemissionsthroughelectrificationandcleanerelectricity,andrequiresmoredisruptivetechnologiestoachievedeeperemissionreductions.However,thesedisruptivecarbonabatementtechnologiesareunattractiveforinvestment
becausetheyareatanearlystageofdevelopmentwithunproveneconomics:
。Significantinvestmentinnewenergytechnologiesisthefoundationforrevolutionizingenergyuseinheavyindustry.Manyprocessesrequirehightemperatures—upto
1,500°C—andlargelyrelyonburningfossilfuels,aslarge-scalehigh-temperature
electrificationiscostlytoimplementwithcurrenttechnology.Inaddition,theavailabilityofbiomassfuelslimitstheirapplicationsinheavyindustry,whileotheremergingenergysources,suchasgreenhydrogen,arestillunderfurtherdevelopment.
。Eliminatingprocessemissionsischallengingandrequiresinvestmentincarbon
sequestrationtechnologies,suchascarboncapture,andinnewindustrialprocessesand
iAccordingtotheInternationalEnergyAgency(IEA),thetotalUSenergyconsumptionwas2,300milliontonsofstandardoilequivalent(Mtoe)in
2019—roughlyequalto3,300Mtce,usingaconversionfactorof1tonofstandardcoalequivalentto0.7tonsofoilequivalent,
/articles/the-challenge-of-reaching-zero-emissions-in-heavy-industry.
FinancingtheLow-CarbonTransitioninHeavyIndustry/5
products.SomeindustriesproduceCO2emissionsfromchemicalreactions.Forexample,thecalcinationofcementclinkerproduceslargeamountsofCO2andaccountsforabouttwo-thirdsoftheindustryʼsdirectemissions.Thisproblemcanbesolvedby
manufacturingnewproductsorapplyingnewprocesseswhoseapplicabilityand
scalabilityhaveyettobedemonstrated.Ifitisdifficulttochangethecurrentproductionpathincertainindustries,investmentincarboncapturetechnologieswillstillbeneeded.
·Thegreenpremiumforproducinglow-carbonindustrialproductsremainshighintheshorttomediumterm.Comparedwiththetraditionalpath,thecurrentcostpremiumforproducing
zero-carbonindustrialproductsis20%–100%(seeExhibit1),whilemostindustrialproducts
faceintensecompetitionwithlowprofitmargins.Downstreamindustrieshavelimitedabilitytowithstandhighpremiums.AsChinaʼscarbonmarketsystemdoesnotyetincorporatemajorheavyindustries,producersfacethechallengeofswitchingtolow-carbon,butmoreexpensive,productionwithoutraisingprices.Smallermarginsalsoreducethewillingnessofheavy
industryenterprisesandfinancialinstitutionstoleadinlow-carboninvestment.
Exhibit1GreenPremiumRatefortheProductionofKeyZero-Carbon
IndustrialRawMaterialsinChina
Steel
Cement
Aluminum
Plastics
0%20%40%60%80%100%
120%
Zero-carbonproductiongreenpremiumrate(2020)Zero-carbonproductiongreenpremiumrate(2050)
RMIGraphic.Source:RMIanalysis
Chinaʼsindustrialsectoraccountsforabout66%ofthecountryʼstotalenergyconsumption.iiThesectoraccountsfornearly40%ofthecountryʼstotalCO2emissionsifonlyaccountingfordirect
emissionsand64%ifrelatedelectricityemissionsareinclude
d.2
Carbonemissionsfromfourmajorheavyindustries(steel,cement,petrochemicalsandchemicals,andaluminum)amountto52%ofthenationaltotal,highlightingtheimportanceofthelow-carbontransitionofheavyindustryin
meetingChinaʼsdual-carbongoals.
Sincethelaunchofthe14thFive-YearPlan(2021–25),Chinaʼsstateministriesandcommissionshaveissuedanumberofdocumentsthatcreatea“1+N”policysystemforcarbonpeakandcarbon
iiAccordingtotheNationalBureauofStatistics,in2020,Chinaʼstotalenergyconsumptionwas4,980Mtce.Theindustrialsectorconsumedabout3,300Mtceor66%ofthetotal.
FinancingtheLow-CarbonTransitioninHeavyIndustry/
neutrality,statingthatindustryisakeyareaforpromotingcarbonpeakandcarbonneutrality.Thegovernmenthassubsequentlyissuedthe“ImplementationGuidelinesforEnergySaving,Carbon
Reduction,RenovationandUpgradinginKeyAreasofEnergy-IntensiveIndustries(2022Edition)”andthe“ActionPlanforCarbonPeakingintheIndustrialSector,”whichprovidefurtherguidanceonthelow-carbondevelopmentoftheindustrialsecto
r.3
Atthesametime,thedecarbonizationofChinaʼsheavyindustryfacesseveralmajorchallenges:
·Largeproductioncapacity:Chinaproducesandconsumes50%oftheworldʼstotalsteel,
cement,andaluminum,andisthelargestproducerandconsumerofmajorchemicalproducts.Theseindustrieshavesignificantproductioncapacitycharacterizedbyheavyassetsandhighenergyconsumption,makingthetransformationtaskformidable.
·High-carbonrawmaterialsandfuelstructure:Themainrawmaterialsforheavyindustrial
productioninChinaarehighlydependentonfossilrawmaterials,representedbycoal.In
addition,heavyindustrymostlyuseshigh-temperature,high-pressureprocessesinproduction
wherefossilfuel,mainlycoal,isthemainsourceofenergy.Thedecarbonizationoffuelsfaces
significanttechnological,economic,andgeographicbarriers.Forexample,morethan90%ofChinaʼsdomesticsteelproductionisbasedontheblastfurnace–basicoxygenfurnace(BF-BOF)processusingcokeasareducingagent.Coalprovidesmorethan95%oftheheatincement
production,whileitaccountsfornearly80%oftherawmaterialsforthesynthesisofammoniaandmethanolinchemicalproduction.
·Youngassets:MostofChinaʼsheavyindustrycapacitywasbuiltinthepast30yearsandmost
assetsarestillinearly-tomid-life
.4I
ndustrialassetsfacetheriskofaccelerated
decommissioningandassetstrandingunderthedual-carbonrequirements,puttingpressure
oncorporatefinancesandfinancialinstitutionsʼreturns.
Large-scalefinancialsupportisurgentlyneededforthelow-carbontransitioninheavyindustry.Heavyindustrycompaniesshouldachievethisbystartingtoupgradetheirequipmentnowwithproventransitiontechnologies.However,inheavyindustry,theupgradeoflarge-scaleequipmentandinfrastructurerequiresmassivecapitalinvestment.Italsogoesfarbeyondsimplyrelyingonexistingmaturetechnologies.Significantresourcesandfundingarerequiredfortechnology
innovationanddeployment,bothforshort-termbreakthroughsandforlong-termsustainabilitygoals.Iffossilenergyistobereplacedbycleanenergy,thenewtechnologypathwaysforheavy
industryareverydifferentfromtheexistingones,whicharecharacterizedbyhighR&Dcosts,largeup-frontinvestmentrequirements,hightechnologicaluncertainty,andlongpaybackperiods.Theriskofstrandedassetsduringthetransitionfromoldtonewtechnologicalpathwaysshouldbeaparticularconcern;tomitigateandsharethisriskrequiressubstantialresourcesandfinancial
instruments.
Inthecontextoftheenergycrisisandtheglobaleconomicdownturn,heavyindustrycompaniesaregenerallyfacingsignificantfinancialpressures.Withtheirworkingcapitalunderpressure,theirownfundscanhardlymeetthedemandforlow-carbontransition,andtheyurgentlyneedexternal
financialsupport.Inthesteelindustryforexample,in2022,thecokingcoalpurchasecostof
benchmarksteelcompaniesincreasedby24.9%yearonyear,andtheinjectioncoalpurchasecostincreasedby24.3%,accordingtotheChinaIronandSteelIndustryAssociation.Theoperating
revenueandprofitofthebenchmarksteelcompaniesdecreasedby6.4%and72.3%,respectively
.5
FinancingtheLow-CarbonTransitioninHeavyIndustry/7
Inrecentyears,greenfinanceinChinahasdevelopedrapidly,boostingconfidenceinthetransitionoftheentiremarket.BytheendofJune2023,thegreenloanbalanceof21majorbanksreached
RMB25trillion,makingitthelargestintheworldandanimportantexternalsourceoffinancingforthelow-carbontransition.
6
However,greenfinanceinvestmentshavemostlyfocusedon“pure
green”projectswithhightechnologicalmaturity,suchascleanenergy,greentransportation,andgreenbuilding.Forindustrieswithhighcarbonemissions,suchasheavyindustry,orprojectsat
relativelyearlystagesoftechnologydevelopment,financialsupportremainsinsufficient,makingitdifficulttomeetthetransitionneedsofthesesectors.Designingfinancingmechanismstochannelmorefundsintothelow-carbontransitionofheavyindustry,especiallyforresearch,development,andpromotionofinnovativetechnologies,willbeakeyopportunityandchallengeinachievinganet-zerofuture.
FinancingtheLow-CarbonTransitioninHeavyIndustry/8
Low-CarbonTransitionPathwaysforHeavyIndustryinChina
SteelIndustry
Chinaistheworldʼslargeststeelproducerandconsumer.In2020,Chinaproduced1.065billiontonsofcrudesteel,accountingfor56.4%oftheworldtota
l,7a
ndconsumed995milliontonsofsteel,
accountingfor56.2%.Inthesameyear,Chinaʼssteelindustryemittedabout15%ofthecountryʼs
totalcarbonemissions,andover60%oftotalglobalsteelcarbonemissions
.8
Atpresent,domesticsteelproductioninChinaisstilldominatedbythelongprocess—withacarbonintensitythreetimes
greaterthanthatofshortprocesses.Chinaʼssteelindustrywillshifttolow-carbonmetallurgythatreducescarbonemissionsthroughenergy-efficiencyimprovement,scrap-basedshortprocess,
hydrogen-basedmetallurgy,andcarboncapture(seeExhibit2andExhibit3).
Energy-efficiencyimprovementsinsteelproductionmainlyinvolvewaste-heatandpressure
utilization,anddistributedenergycoupling.Overthepastdecade,Chinaʼssteelindustryhasmaderapidprogressinenergy-efficiencyimprovement,reducingkeysteelcompaniesʼenergy
consumptionintensityfrom600kgofstandardcoalin2010to545kgin2020.However,withrespecttometallurgyprocessesʼcarbonemissionsandenergyconsumption,thereisstillagapbetween
Chinaandadvancedcountries.Chinahasclearpotentialforenergy-efficiencyimprovements.
Oneofthemaintrendsinthetransitiontolow-carbonsteelisuseofthescrap-basedshortprocessinwhichcrudesteelisproducedfromscrapfeedstockwithanelectricfurnace.InChina,duetoan
insufficientsupplyofdomesticscrapandelectricfurnacecapacity,short-processsteelmaking
accountsforabout10%ofnationaltotalcrudesteel.Socialscrapandimportedscrapresourceswillgraduallyincrease,andrecyclingsystemswillbecomemoreefficient.TheshortprocesswillbeakeycomponentinChinaʼseffortstoreducethecarbonintensityofsteelproductionanditsdependenceonimportedironore.
Hydrogen-basedmetallurgymainlyconsistsofinjectionofhydrogenintoblastfurnacesand
hydrogen-baseddirectreducediron(DRI).Thefirstoftheseprocesseseffectivelyutilizesexisting
blastfurnaceequipment,avoidinglarge-scalestrandingofyoungassets.Thehydrogeninjection
techniquereducescarbonemissionsbyreplacingpartiallypulverizedcoalandcokewithhydrogen.DRIhasahighpotentialforcarbonreductionashydrogendirectlyreducespelletizedoretosolid
spongeiron.Theemissionsreductionpotentialcanreach95%whenusinggreenhydrogen.Intheshortterm,injectinghydrogenintoblastfurnaceswillbeafocusoftheindustry.DRIisunder
pilot/demonstrationandexpectedtobeputintolarger-scaleproductioninthemediumtolongterm.
ThemainusecaseforcarboncaptureinthesteelindustryiscapturingCO2generatedintheBF-BOFprocess.Speakingbroadly,thesteelindustryhasvariousemissionssourcesandlow-carbon
concentrations,socarboncaptureisrelativelydifficultandcostly.TheCO2contentofblastfurnacegasishigherthanthatofotherprocessessuchasbasicoxygenfurnace.Theblastfurnacecanbe
prioritizedforcapture,butcarboncaptureinthemetallurgicalindustryisstillarelativelyexpensivetechnology.
FinancingtheLow-CarbonTransitioninHeavyIndustry/
Inaddition,emergingtechnologiessuchasironoreelectrolysismayplayanimportantroleinthesteelindustryifthesetechnologiesmatureandcanbesuccessfullyimplementedinlarge-scalepilots.Ironoreelectrolysisreducesironoretoironathighorlowtemperaturesbydirectlyusingelectricity,butnopilotprojectshavethusfarbeenlaunchedinChina.
Giventhetechnologymaturity,cost-effectiveness,andotherfactorsofeachlow-carbonproductionroute,theshort-,medium-andlong-termpathwaysfortheChinasteelindustryaresummarizedasfollows:
Exhibit2RoadmaptoCarbonReductionintheChinaʼsSteelIndustry
CarbonIntensity(%)
100%
80%
60%
40%
20%
0%
Recoveryofcokeovenrisingtubewasteheat;ultrathick-layersinteringtechnology
Optimizedandenergy-efficientironandsteelrollingprocessinterface;high-temperatureandhigh-pressurefullydryquenching;integratedsinteroreverticalcoolingandsinteringfluegas;energyefficiencyrecoveryofwasteheatfromelectricarcfurnaces
Furnacefluegasrecyclingtechnology
Efficientrecyclingandutilizationofsensibleheatfromgoldslag
Efficientutilizationofmediumandlowtemperaturewasteheatandenergy
Efficientrecyclingofzinc-containingdustandsludge
Tailingsresourceutilization;pressurizedheatboringrecoveryofsteelslag;integratedtreatmentandrecoveryofwastewaterresources
Efficientandintelligentdetermination,gradingandprocessingofscrap;efficientutilizationandrecyclingofslag;utilizationofmetallurgicalby-productgasresource
Lowcarbonlogistics;highscrapratioinBOF;
Whole-processintelligentrefiningtechnologybasedonbigdata;Powergenerationfromrenewablesandteelgaswasteheatforpeakingandself-supply
Lowtemperaturemetallurgy;hydrogen-baseddirectreduction
Carbon-richcircularblastfurnace
Non-carbonelectricfurnacesteelmakingprocess;hydrogen-basedsmeltingreduction
Microwavemetallurgy;flashmelting;ironoreelectrolysisprocess
High-performancesiliconsteels;corrosion-andweather-resistantlong-lifesteels;high-strengthlow-alloywear-resistantsteel
New-generationhigh-performancespecialsteel;greensteelbasedonalife-cyclecarbonfootprintassessment
Coldrolledhighstrengthautomotiveplates
Commonkeyprocesstechnologyforgreenecosteelmaterialsresearchandpreparation
Carboncapture,utilization,andstorage
CO2mineralization;geological,chemicalandbiologicalutilizationofCO2;multi-industryjointcarbonextraction,reductionandsequestration.
Resourcerecycling
Processoptimizationandinnovation Metallurgicalbreakthroughs
Systemenergy–efficiencyimprovement
CO2sequestrationforenhancedoilrecovery;utilizationofCO2resourceformanufacturingprocess;limecalcinatingthroughhotcarriercirculationandrecyclingofCO2resource
intelligentsteelmakinginelectricfurnace;highratioofpelletsinblastfurnace;nearend-formfully
continuousmanufacturing
Productiterationandupgrade
20202030204020502060
RMIGraphic.Source:ChinaIronandSteelAssociation
Exhibit3CrudeSteelProductionForecastforDifferentProductionRoutes
(2020—50)
Production(100Mt/year)
12
10
8
6
4
2
0
Blastfurnaceandotherlong-termprocesses
Primarysteel-CCS
Primarysteel-hydrogen
Shortprocess-electricfurnace
2020203020402050
RMIGraphic.Source:RM
I,/insight/pursuing-zero-carbon-steel-in-china/
FinancingtheLow-CarbonTransitioninHeavyIndustry/1o
Nearterm(2020–30):Thesteelindustrywillrelymainlyonenergy-efficiencyimprovementand
developmentofthescrap-basedshortprocesstoreducecarbonemissions.Nationaland
industry-levelpolicyrequirementsforultra-lowemissionstransition,energyconsumptionintensity,andshort-processdevelopmentwillfurtheracceleratethedeploymentoflow-carbontechnology.InJanuary2022,ChinaʼsMinistryofIndustryandInformationTechnology(MIIT)issued“Guiding
OpinionsonPromotingtheHigh-QualityDevelopmentoftheIronandSteelIndustry,”requiringthatmorethan80%ofthenationʼssteelproductioncapacityshouldcompletetheultra-lowemissionstransitionby2025.Thetotalenergyconsumptionpertonofsteelshouldbereducedbyover2%by2025,toensurecarbonpeakingby2030.GuidanceissuedbyMIITandotherministriesand
commissionsinJuly2022statesthatby2025,theannualprocessingcapacityofcompaniesqualifiedtoprocessscrapshallexceed1.8milliontons,andshortprocesswillaccountfor15%oftotal
steelmakingoutputs.
Mediumterm(2030–40):Outputreductionandthescrap-basedshortprocesswillbeprioritizedtoreducecarbonemissions.Hydrogen-basedmetallurgyandcarboncapturewillbecommercializedgradually.Beyond2030,Chinaʼssteelproductionwillplateauandthendecline.Crudesteel
productionisexpectedtodropto780milliontonsperyear(Mt/year)in2040.Productiondeclinewillrequireoptimizeddevelopmentofexistingcapacitiesandtheeliminationofobsoletecapacitiesinthesteelindustry.In2040,theavailabilityofscrapwillfurtherexpandwithincreasinglyhigher
recyclingproportionandquality.Theproductioncapacityofshort-processsteelmakingisexpectedtoreach310Mt/year.Hydrogen-basedDRIandcarboncapturewillgraduallybecome
commercialized—drivenbythefallingcostofhydrogen,carbonpricing,andthescalingof
equipment—eachcontributingsteelproductionofabout108Mt/year.In2040,thetotalcarbonemissionsofthesteelindustryareprojectedtoreach850Mt/yearwhilethecarbonemissionsintensitywillbereducedto1.1tonsCO2pertonofcrudesteel
.9
Longterm(2040–50):Outputreductionandthescrap-basedshortprocesswillcontinuetoplayan
importantro
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论