




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter2
The
Solution
of
Least
Squares
Problems2.1Linear
Least
Squares
Estimatio2.2AGeneralized“Pseudo-Inverse”
Approachto
Solvingthe
Least-squaresProblem2.1.1Example:AutoregressiveModelling
Anautoregressive(AR)processisarandomprocesswhichistheoutputofanallpole-filterwhenexcitedbywhitenoise.Thereasonforthisterminologyismadeapparentlater.Inthisexample,wedealindiscretetime.Anall-polefilterhasatransferfunctionH(z)givenbytheexpression
2.1LinearLeastSquaresEstimation
where
ziare
the
poles
of
the
filter
and
hiare
the
coefficients
of
the
correspondingpolynomial
in
z.
Let
W(z)
and
Y(z)
denote
the
z-transforms
of
the
input
and
outputsequences,
respectively.
If
W(z)=σ2(corresponding
to
a
white
noise
input)
then
or
for
this
specific
case,
Thusequation(2.1.2)maybeexpressedas
Wenowwishtotransformthisexpressionintothetimedomain.Eachofthetime-domainsignalsofequation(2.1.3)aregivenbythecorrespondinginversez-transformrelationshipas
and
the
input
sequence
corresponding
to
the
z-transform
quantity
σ2
is
where
wn
is
a
white
noise
sequence
with
power
σ2.The
left-hand
side
of
equation(2.1.3)
isthe
product
of
z-transforms.
Thus,the
time-domain
representation
of
the
left-han
dside
ofequation
(2.1.3)
is
the
convolution
of
the
respective
time-domain
representations.
Thususing
equation(2.1.3)
to
(2.1.6)we
have
or
Repeatingthisequationformdifferentvaluesoftheindexiwehave
Soagain,itmakessensetochoosetheh’sinequation(2.1.5)sothatthepredictingtermYhisascloseaspossibletoypinthe2-normsense.Hence,asbefore,wechoosehtosatisfy
Noticethatiftheparametershareknowntheautoregressiveprocessiscompletelycharacterized.
2.1.2The
Least-Squares
Solution
We
define
our
regression
model
corresponding
to
equation(2.1.11)
as
and
we
wish
to
determine
the
value
xLS
which
solves
where
A∈Rm×n,m>n,b∈Rm.The
matrix
A
is
assumedf
ull
rank.
WenowdiscussafewrelevantpointsconcerningtheLSproblem:
·Thesystemequation(2.1.12)isoverdeterminedandhencenosolutionexistsinthegeneralcaseforwhichAx=bexactly.
·Ofallcommonlyusedvaluesofpforthenorm‖·‖pinequation(2.1.12),p=2istheonlyoneforwhichthenormisdifferentiableforallvaluesofx.Thus,foranyothervalueofp,theoptimalsolutioninnotobtainablebydifferentiation.
·NotethatforQorthonormal,wehave(onlyforp=2)
Thisfactisusedtoadvantagelateron.
·Wedefinetheminimumsumofsquaresoftheresidual‖AxLS-b‖22asρ2LS.
·Ifr=rank(A)<n,thenthereisnouniquexLSwhichminimizes‖Ax-b‖2.However,thesolutioncanbemadeuniquebyconsideringonlythatelementofset{xLS∈Rn|‖AxLS-b‖2=min}whichhasminimumnorm.
2.1.3Interpretation
of
the
Normal
Equations
Equation(2.1.23)
can
be
written
in
the
form
or
where
is
the
leastsquares
error
vector
between
AxLS
and
b,
rLSmust
be
orthogonal
to
R(A)
forthe
LS
solution
xLS.Hence,
the
name“normal
equations”.This
fact
gives
an
importantinterpretation
to
least-square
sestimation,
whichwe
now
illustrate
for
the
3×2case.
Equation
(2.1.11)
may
be
expressed
as
Thisinterpretationmaybeaugmentedasfollows.Fromweseethat
HencethepointAxLSwhichisinR(A)isgivenby
WherePistheprojectorontoR(A).Thus,weseefromanotherpointofviewthattheleast-squaressolutionistheresultofprojectingb(theobservation)ontoR(A).
Thereisafurtherpointwewishtoaddressintheinterpretationofthenormalequations.Substitutingequation(2.1.26)into(2.1.25)wehave
Thus,rLSistheprojectionofbontoR(A)⊥.Wecannowdeterminethevalueρ2LS,whichisthesquared2-normoftheLSresidual:
2.1.4Properties
of
the
LS
Estimate
Here
we
consider
the
regression
equation(2.1.11)
again.
It
is
reproduced
below
forconvenience.
InordertodiscussusefulandinterestingpropertiesoftheLSestimatewemakethefollowingassumptions:
A1:
nisazeromeanrandomvectorwithuncorrelatedelements;i.e.,E(nnT)=σ2I.
A2:Aisaconstantmatrixwhichisknownwithnegligibleerror.Thatis,thereisnouncertaintyinA.
UnderA1andA2,wehavethefollowingpropertiesoftheLSestimategivenbyequation(2.1.26).
XLS
is
an
Unbiased
Estimate
of
X0
the
True
Value
To
show
this,we
have
from
equation
(2.1.26)
Butfromtheregressionequation(2.1.29),werealizethattheobserveddata
baregeneratedfromthetruevaluesx0ofx.Hencefromequation(2.1.29)
ThereforetheE(x)isgivenas
whichfollowsbecauseniszeromeanfromassumptionA1.ThereforetheexpectationofxisitstruevalueandxLSisunbiased.
CovarianceMatrixofxLS
Thedefinitionofthecovariancematrixcov(xLS)ofthenon-zeromeanprocessxLSis:
ForthesepurposeswedefineE(xLS)as
Substitutingequation(2.1.34)and(2.1.26)in(2.1.33),wehave
FromassumptionA2wecanmovetheexpectationoperatorinside.Therefore,
xLSisaBLUE
Accordingtoequation(2.1.26),weseethatxLSisalinearestimatesinceitisalineartransformationofb,wherethetransformationmatrixis(ATA)-1AT.FurtherfromSectionweseethatxLSisunbiased.Withthefollowingtheorem,weshowthatxLSisthebestlinearunbiasedestimator(BLUE).
ProbabilityDensityFunctionofxLS
ItisafundamentalpropertyofGaussian-distributedrandomvariablesthatanylineartransformationofaGaussiandistributedquantityisalsoGaussian.Fromequation(2.1.26)weseethatxLSisalineartransformationofb,whichisGaussianbyhypothesis.SincetheGaussianpdfiscompletelyspecifiedfromtheexpectationandcovariance,givenrespectivelybyequation(2.1.32)and(2.1.36),thenxLShastheGaussianpdfgivenby
WeseethattheellipticaljointconfidenceregionofxLSisthesetofpointsψdefinedas
where
k
is
some
constant
which
determines
the
probability
level
that
an
observation
willfall
within
ψ.
Note
that
if
the
joint
confidence
region
becomes
elongated
in
any
direction,then
the
variance
of
the
associated
components
of
xLSbecome
large.
Let
us
rewrite
thequadratic
form
in
equation(2.1.44)
as
Theorem2
TheleastsquaresestimatexLSwillhavelargevariancesifatleastoneoftheeigenvaluesofATAissmallwheretheassociatedeigenvectorshavesignificantcomponentsalongthex-axes.
Maximum-LikelihoodProperty
Inthisvein,theleast-squaresestimatexLSisthemaximumlikelihoodestimateofx0.Toshowthisproperty,wefirstinvestigatetheprobabilitydensityfunctionofn=Ax-b,givenforthemoregeneralcasewherecov(n)=Σ:
2.1.5Linear
Least-Squares
Estimation
and
the
Cramer
Rao
Lower
Bound
In
this
sectionwe
discuss
the
relationship
between
the
cramer
rao
lower
bound(CRLB)
and
the
linear
least-squares
estimate.
We
first
discussthe
CRLB
itself,
and
thengo
onto
discuss
the
relationship
between
the
CRLB
and
linear
leastsquares
estimation
inwhite
and
coloured
noise.
The
Crame
rRao
Lower
Bound
Here
we
assume
that
the
observed
data
b
is
generated
from
the
model(2.1.29),forthe
specific
case
when
the
noise
n
is
a
joint
Gaussian
zero
mean
process.In
order
to
addressthe
CRLB,
we
consider
a
matrix
J
defined
by
Inourcase,Jisdefinedasamatrixofsecondderivativesrelatedtoequation(2.1.45).Theconstanttermsprecedingtheexponentinarenotfunctionsofx,andsoarenotrelevantwithregardtothedifferentiation.Thusweneedtoconsideronlytheexponentialtermofequation(2.1.45).Becauseoftheln(·)operationreducestothesecondderivativematrixofthequadraticformintheexponent.ThissecondderivativematrixisreferredtoastheHessian.Theexpectationoperatorofequation(2.1.46)isredundantinourspecificcasebecauseallthesecondderivativequantitiesareconstant.Thus,
UsingtheanalysisofSectionand,itiseasytoshowthat
Least-Squares
Estimation
and
the
CRLB
for
White
Noise
Using
equation(2.1.45),
we
now
evaluate
the
CRLB
for
data
generated
according
tothe
linearreg
ression
model
of
(2.1.11),
for
the
specific
case
of
white
noise
where
Σ=σ2I.That
is,if
we
observe
data
which
obey
the
model
(2.1.11),
what
is
the
lowest
possiblevariance
on
the
estimates
given
by
equation
(2.1.26)
from
(2.1.48),
Least-SquaresEstimationandtheCRLBforColouredNoise
Inthiscase,weconsiderΣtobeanarbitrarycovariancematrix,i.e.,E(nnT)=Σ.Bysubstitutingequation(2.1.45)andevaluating,wecaneasilyshowthattheFisherinformationmatrixJforthiscaseisgivenby
WenowdeveloptheversionofthecovariancematrixoftheLSestimatecorrespondingtoequation(2.1.36)forthecolourednoisecase.Supposeweusethenormalequation(2.1.23)toproducetheestimatexLSforthiscolourednoisecase.UsingthesameanalysisasinSection,exceptusingE(b-Ax0)(b-Ax0)T=Σinsteadofσ2Iasbefore,weget:
Noticethatinthecolourednoisecasewhenthenoiseispre-whitenedasinequation(2.1.53),theresultingmatrixcov(xLS)isequivalenttoJ-1inequation(2.1.51)whichisthecorrespondingformoftheCRLB;i.e.,theequalityoftheboundisnowsatisfied,providedthenoiseispre-whiten.
Hence,inthepresenceofcolourednoisewithknowncovariancematrix,pre-whiteningthenoisebeforeapplyingthelinearleast-squaresestimationprocedurealsoresultsinaMVUEofx.Wehaveseenthisisnotthecasewhenthenoiseisnotpre-whitened.
2.2AGeneralized“Pseudo-Inverse”Approach
toSolving
the
Least-squares
Problem
2.2.1Least
Squares
Solution
Using
the
SVD
Previously
we
have
seen
that
the
LS
problemmay
be
posed
as
where
the
observation
b
is
generated
from
the
regression
model
b=Ax0+n.
For
the
casewhere
A
is
full
rankwe
saw
that
the
solution
xLSwhich
solves
is
given
by
the
normalequation
WearegivenA∈Rm×n,m>nandrank(A)=r≤n.IfthesvdofAisgivenasUΣVT,thenwedefineA+asthepseudo-inverseofA,definedby
ThematrixΣ+isrelatedtoΣinthefollowingway.If
then
Theorem
WhenAisrankdeficienttheuniquesolutionxLSminimizingsuchthat‖x‖2isminimumisgivenby
whereA+isdefinedbyequation(2.2.3).Further,wehave
2.2.2Interpretation
of
the
Pseudo-Inverse
Geometrical
Interpretation
Let
us
now
take
an
other
look
at
the
geometry
of
least
squares.It
sho
wsa
simple
LSproblem
for
the
case
A∈R2×1.We
again
see
that
xLS
is
the
solution
which
corresponds
toprojecting
b
onto
R(A).In
fact,substituting
into
the
expression
AxLS,we
get
But,forthespecificcasewherem>n,weknowfromourpreviousdiscussiononlinearleastsquares,that
wherePistheprojectorontoR(A).Comparingequation(2.2.18)and(2.2.19),andnotingtheprojectorisunique,wehave
Thus,thematrixAA+isaprojectorontoR(A).
ThismayalsobeseeninadifferentwayasfollowsUsingthedefinitionofA+,wehave
WhereIristher×ridentityandUr=[u1,…,ur
].Fromourdiscussiononprojectors,weknowUrUrTisalsoaprojectorontoR(A)whichisthesameasthecolumnspaceofA.
RelationshipofPseudo-InverseSolutiontoNormalEquations
SupposeA∈Rm×n,m>n,thenormalequationsgiveus
butthepseudo-inversegives:
Inthefullrankcase,thesetwoquantitiesmustbeequal.Wecanindeedshowthisisthecaseasfollows:
Welet
betheEDofATAandwelettheSVDofATbedefinedas
Usingtheserelationswehave
asdesired,wherethelastlinefollowsfrom.Thus,forthefull-rankcaseform>n,A+=(ATA
)
-1AT.Inasimilarway,wecanalsoshowthatA+=A(ATA
)
-1forthecasem<n.
The
Pseudo-Inverse
as
a
Generalized
Linear
System
Solver
If
we
are
willing
to
accept
the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津仁爱学院《计算机系统的局限性》2023-2024学年第二学期期末试卷
- 排球正面上手发球 教学设计-2023-2024学年高一上学期体育与健康人教版必修第一册
- 阜阳职业技术学院《石油工程软件》2023-2024学年第二学期期末试卷
- 亿以内数的大小比较(教学设计)-2024-2025学年四年级上册数学人教版
- 西安电力高等专科学校《养羊学》2023-2024学年第二学期期末试卷
- 宁夏财经职业技术学院《文化史》2023-2024学年第二学期期末试卷
- 泰州2024年江苏泰兴市妇幼保健院招聘高层次人才2人(第2批)笔试历年参考题库附带答案详解
- 漯河医学高等专科学校《钢结构设计与施工》2023-2024学年第二学期期末试卷
- 鹤壁职业技术学院《建筑实训》2023-2024学年第二学期期末试卷
- 伊犁师范大学《融媒体监测技术》2023-2024学年第二学期期末试卷
- 自动驾驶数据安全白皮书
- 工期定额-民用建筑
- 黄土地质灾害类型及其危害性评估
- 交际德语教程第二版A1Studio[21] 课后习题参考答案
- 最新修改 班组安全管理建设--5831模式通用课件
- 气割、电气焊作业的应急救援预案
- 2018年柴油机大修工程量单
- 超级精美PPT模版美国经典ppt模板(通用珍藏版2)
- 中医内科方歌-八
- 气动控制阀的定义分类及工作原理详解
- 梯形练字格A4纸打印版
评论
0/150
提交评论