中考数学复习:二次根式(专项训练)(解析版)_第1页
中考数学复习:二次根式(专项训练)(解析版)_第2页
中考数学复习:二次根式(专项训练)(解析版)_第3页
中考数学复习:二次根式(专项训练)(解析版)_第4页
中考数学复习:二次根式(专项训练)(解析版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10二次根式

一、单选题

1.(2021•珠海市九洲中学九年级)在函数y=Y手中自变量x的取值范围是()

A.x>-lB.x<-lC.x>lD.x>-l

【答案】D

【分析】

由题意直接根据二次根式的性质即被开方数大于或等于0,可以求出x的范围.

【详解】

解:由函数y=Y乎有意义可得,

x+1>0,解得xN-1.

故选:D.

【点睛】

本题考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变

量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方

数非负.

2.(2021•内蒙古九年级)下列计算中,正确的是()

A.),/=a'B.(。—b)-=+2ab—b~C.x?,x,=x*D.-x/^2,s/3=-\[s

【答案】A

【分析】

分别根据幕的乘方、积的乘方,完全平方公式,同底数累的乘法,二次根式的乘法逐项判断即可求解.

【详解】

解:A.(a2>)-a3=a6-a3=a9,因此A选项计算正确,符合题意;

B.(a-b)2=a2-2ab+b2,因此B选项计算错误,不合题意;

242+46

C.x-x=x=x,因此C选项计算错误,不合题意;

D.6.忑=叵忑=a,因此D选项计算错误,不合题意.

故选:A

【点睛】

本题考查了哥的乘方、积的乘方,完全平方公式,同底数基的乘法,二次根式的乘法等知识,熟练掌握各

运算法则是解题关键.

3.(2021•重庆字水中学九年级)估计a+Ax七的值应在()

A.5和6之间B.6和7之间C.7和8之间D.8和9之间.

【答案】C

【分析】

先化简龙+辰《,再估算无理数病的值即可解题.

【详解】

解:V8+V36x=272+^36x1=2V2+V18=272+372=572

5A/2=V50,V49<V50<V64

7<y/50<8

即说+病xg介于7和8之间,

故选:C.

【点睛】

本题考查二次根式的乘法、合并同类二次根式等知识,是基础考点,掌握相关知识是解题关键.

4.(2021•厦门市第九中学九年级)下列二次根式中能与行合并的是()

A.yfsB.^9C.3D.J12

【答案】D

【分析】

化为最简二次根式,然后根据同类二次根式的定义解答.

【详解】

A.a=2母,不能与公合并,故该选项不符合题意;

B.亚=3,不能与百合并,故该选项不符合题意;

C.3,不能与百合并,故该选项不符合题意;

D.V12=25/3,能与百合并,故该选项符合题意.

故选D.

【点睛】

本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.一般地,把几个二次根

式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.

5.(2021•重庆北培•西南大学附中九年级)在函数>=立二中,自变量x的取值范围是()

x-2

A.x>-lB.x>-\C.xN-1且xw2D.x>-l且"2

【答案】C

【分析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出X的范围.

【详解】

[x+l>0

解:根据题意得:…,

[x—2w0

解得:x>—l且x#2.

故选:C.

【点睛】

本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:

(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;

(3)当函数表达式是二次根式时,被开方数非负.

6.(2021•广西南宁十四中九年级)下列属于最简二次根式的是()

A.B.y/2C.y/9D.J0.1

【答案】B

【分析】

根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们

把满足上述两个条件的二次根式,叫做最简二次根式进行分析即可.

【详解】

A.《=,开方数是分数,不是最简二次根式,故此选项不符合题意;

B.也是最简二次根式,故此选项符合题意;

C.囱=3含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;

D,布=后=噜被开方数是分数,不是最简二次根式,故此选项不符合题意;

故选B

【点睛】

此题主要考查了最简二次根式,关键是掌握最简二次根式的条件:(1)被开方数的因数是整数或字母,因

式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.

7.(2021•湖南九年级期中)若二次根式H分有意义,则》的取值范围是()

A.x>3B.x>3C.x<3D.x<3

【答案】B

【分析】

根据二次根式有意义的条件列式求解即可.

【详解】

解:•.•二次根式疗与有意义

•1-X-3>0,即:x>3.

故选:B.

【点睛】

本题主要考查了二次根式有意义的条件,二次根式有意义的条件是被开方数大于等于零.

8.(2021•广西百色•中考真题)下列各式计算正确的是()

A.33=9B.(a-6)-廿

C.2&+3拒=5后D.(202方尸=8.8〃

【答案】C

【分析】

分别根据有理数的乘方、二次根式的计算法则和整式的乘法计算法则进行计算判断即可得到答案.

【详解】

解:A、3三27,此选项错误;

B、(a-Z?)2=a2-2ab+b2,此选项错误;

C、2a+3也=5也,此选项正确;

D、(2a%y=8a43,此选项错误.

故选C.

【点睛】

本题主要考查了二次根式的加法运算和整式的乘法运算,解题的关键在于熟练的掌握相关知识进行求解.

9.(2021•广西桂林•中考真题)下列根式中,是最简二次根式的是()

A.AB."C.D.Ja+b

【答案】D

【分析】

要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整

式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.

【详解】

/、「被开方数不是整数,不是最简二次根式,故本选项不符合题意;

B、"=2是有理数,不是最简二次根式,故本选项不符合题意;

C、疹=同,不是最简二次根式,故本选项不符合题意;

。、符合最简二次根式的定义,是最简二次根式,故本选项正确.

故选:D.

【点睛】

本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.

10.(2021•广西梧州•)下列计算正确的是()

A.至=3也B.V2+V3=V5C.逅=有D.(a)占2

2

【答案】D

【分析】

根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;

【详解】

解:y/12=2-\/3,选项A错误;

力与。不是同类二次根式,不能合并,选项B错误;

=百,选项C错误;

(41)2=2,选项D正确;

故选:D

【点睛】

本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键

二、填空题

11.(2021•江苏镇江•中考真题)使衣厂有意义的x的取值范围是

【答案】x>7

【分析】

直接利用二次根式被开方数是非负数,进而得出答案.

【详解】

解:G7有意义,则X-7N0,

解得:x>7.

故答案为:x>7.

【点睛】

]此题主要考查了二次根式有意义的条件,正确掌握二次根式被开方数是非负数是解题关键.

12.(2021•辽宁盘锦•)如图,四边形48CD为矩形,AB=2道,/D=2也,点尸为边N8上一点.以DP

为折痕将△以尸翻折,点/的对应点为点4.连结44',AA'交PD于点”,点0为线段2c上一点,连结

AQ,MQ,则/。+河。的最小值是________

【答案】472

【分析】

如图,作点/关于的对称点7,取40的中点R,连接27,QT,RT,RM.想办法求出RS,RT,求出

的最小值,再根据a+。河=。河+。4117,可得结论.

【详解】

解:如图,作点A关于BC的对称点T,

取ND的中点尺,连接57,QT,RT,RM.

•.•四边形48。是矩形,

;ZR4T=9O°,

•;AR=DR=6,AT=2AB=46,

:.RT=yjAR2+AT2=#五>+(4后=50,

"A,/关于。尸对称,

■■.AA'LDP,

.­•ZJMD=90°,

,:AR=RD,

:.RM=gAD=也,

■:MT>RT-RM,

■■MT>A42,

••.MT的最小值为4a,

•••QA+QM=QT+QM>MT,

.■.QA+QM>4y[2,

.•.QA+QM的最小值为4行.

故答案为:4vL

【点睛】

本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是求出的最小值,属于中考常考题

型.

13.(2021•四川巴中•中考真题)函数y=V^7+一1中自变量x的取值范围是

x+3

[答案1x<2且洋-3

【分析】

根据被开方数大于等于0,分母不等于0列式计算即可得解.

【详解】

解:由题意得,2-xNO且x+3声0,

解得烂2且x#-3.

故答案为:烂2且在-3.

【点睛】

本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;

(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非

负.

14.(2021•湖南衡阳•中考真题)若二次根式VT与有意义,则实数x的取值范围是.

【答案】仑3

【分析】

利用二次根式的被开方数为非负数列不等式,再解不等式即可得到答案.

【详解】

解:由题意得:x-320,

x>3.

故答案为:x>3.

【点睛】

本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键.

15.(2021•青海)观察下列各等式:①2点=『7];@3^|=^3+|;③4心=14…根据以上规

律,请写出第5个等式:

【答案】6那

【分析】

根据左边根号外的因数与根号内的分子相同,根号内的分母为分子平方与1的差,右边根号内为左边根号

外与根号内两数之和,即可找到其中规律,从而写出第〃个等式,再将〃=6代入即可求出答案.

【详解】

解:猜想第〃个为:

(〃为大于等于2的自然数);

理由如下:

VH>2,

添项得:

2

闻〃/2n-1"4\~n(n3-1)i+n

提取公因式得:

2

闻/In-1'\~n(nV--1)i—+n

分解分子得:

即:

本题考查二次根式的计算,需要通过观察分析和寻求规律、归纳和论证的抽象思维能力,得出一般性的结

论;解答此题的关键是仔细观察、细致分析,局部找规律,整体找关系.

三、解答题

16.(2021•辽宁鞍山•)先化简,再求值:-7%*-,其中a=布+2.

【答案】上;,1+逅

【分析】

根据分式的混合运算的运算法则把原式化简为三,再代入求值.

a-2

【详解】

______3Ya-]

用牛:a2-4Ja2+2a

13Q(Q+2)

Q—2(Q+2)(Q—2)CL—\

a-1Q(Q+2)

(Q+2)(Q—2)Q—1

a

Q—2

当.+2时,原*^=$=

【点睛】

本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.

17.(2021•广西河池•)计算:巫+4一|-1£|+|-V3|.

【答案】3G

【分析】

根据二次根式的性质化简,负整数指数累,绝对值和有理数的乘方计算法则求解即可得到答案.

【详解】

解:VT2+4-'-^j+|-V3

=2V3+---+V3

44

=3^/3

【点睛】

本题主要考查了二次根式的性质化简,负整数指数塞,绝对值和有理数的乘方计算法则,解题的关键在于

能够熟练掌握相关知识进行求解.

18.(2021•辽宁锦州•中考真题)先化简,再求值:(x-1-义)十二一,其中x=G-2.

x+1X'+x

【答案】X(x+2),3-2^/3

【分析】

先把括号内的分式通分,再将除法转化为乘法,把各分子和分母因式分解,然后进行约分化简,最后代入

求值.

【详解】

解:原式=三『、理

(x+2)(%一2)*x(x+1)

x+1x-2

=x(x+2).

把尸行-2代入,原式=(73-2)(V3-2+2)=3-273.

【点睛】

本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

Y—3X—3X

19­(2。"・辽宁盘的)先化简,再求值:-IT』其中x=a+4

4

【答案】三,2a

【分析】

先利用平方差公式和完全平方公式对原式进行分解因式化简,然后代入值计算即可得到答案.

【详解】

解:原j式=xE-3.(Tx-4)r(x+^4)一三x

x+4x_4

x-4x-4x-4

当工=及+4时,

原式=(夜:4)一4=1=23

【点睛】

本题主要考查了因式分解,分式的化简求解,解题的关键在于能够熟练掌握因式分解的方法.

20.(2021•贵州遵义•)先化简三二1十(《±竺_&),再求值,其中》=0_2.

x-2xx-x

【答案】交.

2

【分析】

根据分式的混合运算法则把原式化简,把x的值代入计算即可.

【详解】

解:原式=:+2)(/2)一色上空

x(x-2)x

x+2x

x(x+2)2

1

x+2

原式―丁V2

当x=V2-2时,

V

【点睛】

本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.

(1—yA2Y—2—

21.(2021•辽宁阜新市教育服务中心)先化简,再求值:1+一卜二《~?,其中无=拒+「

Ix+\)x+2x+\

【答案】-一->V2+1

x-1

【分析】

分式算式中有加法和除法两种运算,且有括号,按照运算顺序,先算括号里的加法,再算除法,最后代入

计算即可.

【详解】

htx(x+11—xA2x—2

原式=---7+----7―o7

1工+1x+1Jx+2x+l

2.2(1)

x+1(x+1)2

2(x+l)2

-----------------

x+12(x-l)

x+1

当X=0+1时,

原式"3"

【点睛】

本题是分式的化简求值题,考查了二次根式的混合运算,二次根式的除法等知识,化简时要注意运算顺序,

求值时,最后结果的分母中不允许含有二次根式.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论