点与圆的位置关系第二课时知识课件_第1页
点与圆的位置关系第二课时知识课件_第2页
点与圆的位置关系第二课时知识课件_第3页
点与圆的位置关系第二课时知识课件_第4页
点与圆的位置关系第二课时知识课件_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

点和圆的位置关系制作人:王凤设⊙O

的半径为r,点P到圆心的距离OP=d,则有:点P在⊙O内

点P在⊙O上

点P在⊙O外

点与圆的位置关系d<rd=rd>rrpdprd

Prd读作“等价于”,它表示从符号左端可以得到右端,也可以从右端得到左端。1、平面上有一点A,经过已知A点的圆有几个?圆心在哪里?探究与实践●O●A●O●O●O●O无数个,圆心为点A以外任意一点,半径为这点与点A的距离2、平面上有两点A、B,经过已知点A、B的圆有几个?它们的圆心分布有什么特点?探究与实践●O●O●O●OAB以线段AB的垂直平分线上的任意一点为圆心,以这点到A或B的距离为半径作圆.无数个。它们的圆心都在线段AB的垂直平分线上。经过三角形三个顶点可以画一个圆,并且只能画一个.一个三角形的外接圆有几个?一个圆的内接三角形有几个?经过三角形三个顶点的圆叫做三角形的外接圆。三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。这个三角形叫做这个圆的内接三角形。三角形外接圆的圆心叫做这个三角形的外心。想一想●OABC

有关概念分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.做一做锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.ABC●OABCCAB┐●O●OBACO阅读,完成以下填空:如图:⊙O是△ABC的

圆,△ABC是⊙O的

三角形,O是△ABC的

心,它是

的交点,到三角形

的距离相等。

外接内接外三角形三边垂直平分线三个顶点●经过同一条直线三个点能作出一个圆吗??思考l1l2ABCP如图,假设过同一条直线l上三点A、B、C可以做一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l这与我们以前学过的“过一点有且只有一条直线与已知直线垂直相矛盾,所以过同一条直线上的三点不能做圆.上面的证明“过同一条直线上的三点不能做圆”的方法与我门以前学过的证明不同,它不是直接从命题的已知得结论,而是假设命题的结论不成立(即假设过同一条直线上的三点可以作一个圆),由此经过推理的出矛盾,由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反正法.什么叫反证法?任意四个点是不是可以画一个圆?请举例说明.(不一定)分类讨论:1.四点在一条直线上不能作圆;3.四点中任意三点不在一条直线可能作圆也可能做不出一个圆.ABCDABCDABCDABCD2.三点在同一直线上,另一点不在这条直线上不能做圆;?思考让我们继续做练习2.随意画出四点,其中任何三点都不同一条直线上,是否一定可以画一个圆经过这四点?请同学们讨论!OABCD12∵∠1+∠2=360°∴∠A+∠C=180°同理∠ABC+∠ADC=180°即四点共圆的四边形对角互补练习例1、判断:1、经过三点一定可以作圆。()2、三角形的外心就是这个三角形两边垂直平分线的交点。()3、三角形的外心到三边的距离相等。()4、经过不在一直线上的四点能作一个圆。()×√××练习例2、填空:1、已知⊙O的半径为4,OP=3.4,则P在⊙O的()。2、已知点P在⊙O的外部,OP=5,那么⊙O的半径r满足()3、已知⊙O的半径为5,M为ON的中点,当OM=3时,N点与⊙O的位置关系是N在⊙O的()内部0﹤r﹤5外部

一位考古学家在马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家画出这个碎片所在的整圆,以便于进行深入的研究吗?应用某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?●●●BAC能力提高爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的的安全区域,已知这个导火索的长度为18cm,如果点导火索的人以每秒6.5m的速度撤离,那么是否安全?为什么?问:在⊙O中,点M到⊙O的最小距离为3,最大距离是19,那么⊙O的半径为()

11或8提升:已知菱形ABCD的对角线为AC和BD,E、F、G、H分别是AB、BC、CD、DA的中点,求证E、F、G、H四个点在同一个圆上。

试一试思路:要证明几

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论