《辐射源信号识别探究的国内外文献综述》4500字_第1页
《辐射源信号识别探究的国内外文献综述》4500字_第2页
《辐射源信号识别探究的国内外文献综述》4500字_第3页
《辐射源信号识别探究的国内外文献综述》4500字_第4页
《辐射源信号识别探究的国内外文献综述》4500字_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辐射源信号识别研究的国内外文献综述1辐射源个体识别研究现状特定辐射源识别技术(SpecificEmitterIdentification,SEI)是由美国军队率先进行研究并确立相关概念,我国在该领域起步较晚,从20世纪80年代开始研究至今已有四十余年的发展与改进,总体框架已然确立,如REF_Ref50928055\h图11所示,但技术细节仍在不断发展。最开始雷达辐射源识别技术比较接近于传统信号处理,如文献ADDINEN.CITE<EndNote><Cite><Author>Cooper</Author><Year>2009</Year><RecNum>181</RecNum><DisplayText><styleface="superscript">[1]</style></DisplayText><record><rec-number>181</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535596792">181</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Cooper,D.C.</author></authors></contributors><titles><title>ElectronicIntelligence:theAnalysisofRadarSignals</title><secondary-title>Electronics&Power</secondary-title></titles><periodical><full-title>Electronics&Power</full-title></periodical><pages>242</pages><volume>30</volume><number>3</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[\o"Cooper,2009#181"1]对辐射源信号常规特征进行分析研究,较少了电子对抗侦察系统的组成;文献ADDINEN.CITE<EndNote><Cite><Author>Hassan</Author><Year>2005</Year><RecNum>179</RecNum><DisplayText><styleface="superscript">[2]</style></DisplayText><record><rec-number>179</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535592861">179</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>S.A.Hassan</author><author>A.I.Bhatti</author><author>A.Latif</author></authors></contributors><titles><title>Emitterrecognitionusingfuzzyinferencesystem</title><secondary-title>ProceedingsoftheIEEESymposiumonEmergingTechnologies,2005.</secondary-title><alt-title>ProceedingsoftheIEEESymposiumonEmergingTechnologies,2005.</alt-title></titles><pages>204-208</pages><keywords><keyword>fuzzylogic</keyword><keyword>inferencemechanisms</keyword><keyword>patternrecognition</keyword><keyword>radarcomputing</keyword><keyword>radarsignalprocessing</keyword><keyword>emitterrecognition</keyword><keyword>fuzzyinferencesystem</keyword><keyword>radarsignals</keyword><keyword>atmosphericeffects</keyword><keyword>equipmentnoise</keyword><keyword>radarparametermeasurement</keyword><keyword>patternrecognitionproblem</keyword><keyword>multidimensionalspace</keyword><keyword>dataassociationtools</keyword><keyword>trainingdatarequirements</keyword><keyword>Fuzzysystems</keyword><keyword>Spaceborneradar</keyword><keyword>Marinevehicles</keyword><keyword>Aircraft</keyword><keyword>Dispersion</keyword><keyword>Atmosphericmeasurements</keyword><keyword>Radarmeasurements</keyword><keyword>Extraterrestrialmeasurements</keyword><keyword>Trainingdata</keyword></keywords><dates><year>2005</year><pub-dates><date>18-18Sept.2005</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/ICET.2005.1558881</electronic-resource-num></record></Cite></EndNote>[\o"Hassan,2005#179"2]提出一类用于多维空间模式识别的模糊推理系统,该系统可以有效提高辐射源个体识别技术;文献ADDINEN.CITE<EndNote><Cite><Author>Zhang</Author><Year>2005</Year><RecNum>152</RecNum><DisplayText><styleface="superscript">[3]</style></DisplayText><record><rec-number>152</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535552879">152</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhang,Gexiang</author></authors></contributors><titles><title>ResemblanceCoefficientBasedFeatureSelectionAlgorithmforRadarEmitterSignalRecognition</title><secondary-title>SignalProcessing</secondary-title></titles><periodical><full-title>SignalProcessing</full-title></periodical><volume>21</volume><number>6</number><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[\o"Zhang,2005#152"3]提出一种在特征选择方法中进行改进,基于相似系数优化特征提取过程;文献ADDINEN.CITE<EndNote><Cite><Author>Xin</Author><Year>2006</Year><RecNum>180</RecNum><DisplayText><styleface="superscript">[4]</style></DisplayText><record><rec-number>180</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535592890">180</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>G.Xin</author><author>Y.Xiao</author><author>S.Yingfeng</author><author>H.You</author></authors></contributors><titles><title>ANewRadarEmitterRecognitionMethodBasedonVariablePrecisionRoughSetModel</title><secondary-title>2006CIEInternationalConferenceonRadar</secondary-title><alt-title>2006CIEInternationalConferenceonRadar</alt-title></titles><pages>1-4</pages><keywords><keyword>decisiontheory</keyword><keyword>radardetection</keyword><keyword>radarequipment</keyword><keyword>radartargetrecognition</keyword><keyword>roughsettheory</keyword><keyword>sensorfusion</keyword><keyword>radaremitterrecognitionmethod</keyword><keyword>variableprecisionroughsetmodel</keyword><keyword>radaremitterinformation</keyword><keyword>multisensorsystem</keyword><keyword>decisionrule</keyword><keyword>extractedindexdata</keyword><keyword>metricalradarcharacteristicparameter</keyword><keyword>Reconnaissance</keyword><keyword>Radarapplications</keyword><keyword>Intelligentsensors</keyword><keyword>Databases</keyword><keyword>Sun</keyword><keyword>Helium</keyword><keyword>Aerospaceengineering</keyword><keyword>Multisensorsystems</keyword><keyword>Uncertainty</keyword><keyword>radaremitterrecognition</keyword><keyword>decisionrules</keyword><keyword>variableprecisionroughset</keyword></keywords><dates><year>2006</year><pub-dates><date>16-19Oct.2006</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/ICR.2006.343200</electronic-resource-num></record></Cite></EndNote>[\o"Xin,2006#180"4]利用基于模糊集决策模型改进辐射源分类器设计,有效提升了信号分类精度。传统的辐射源识别大多只能分析信号差异较大的辐射源,目前研究深入之后可区分差异较小的设备,即特定辐射源识别(SEI),特定辐射源识别与传统辐射源识别的过程大致相同,不过与传统辐射源识别对辐射源常规特征进行提取识别不同,辐射源不同个体由于硬件老化以及非线性差异等原因,即使同一型号同一批次的设备,也会呈现细微的差距,SEI技术更倾向于对截获的信号中无意调制特征进行提取,并与对应载体进行匹配识别。目前关于SEI的研究多从时频分析、高阶谱分析、变分模态分解等方法入手。在时频分析方面,时频分析技术通过对信号时频分布的分析,获得信号时频关系,因此常作为信号无意调制特征提取的中间步骤。文献ADDINEN.CITE<EndNote><Cite><Author>李天琪</Author><Year>2020</Year><RecNum>342</RecNum><DisplayText><styleface="superscript">[5]</style></DisplayText><record><rec-number>342</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1599725904">342</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>李天琪</author><author>张玉</author><author>张进</author><author>唐波</author></authors></contributors><auth-address>国防科技大学电子对抗学院;</auth-address><titles><title>基于时频与快速熵的IFF辐射源个体识别方法</title><secondary-title>探测与控制学报</secondary-title></titles><periodical><full-title>探测与控制学报</full-title></periodical><pages>87-93+103</pages><volume>42</volume><number>01</number><keywords><keyword>敌我识别</keyword><keyword>辐射源个体识别</keyword><keyword>时频分析</keyword><keyword>样本熵</keyword></keywords><dates><year>2020</year></dates><isbn>1008-1194</isbn><call-num>61-1316/TJ</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"李天琪,2020#342"5]提出一种基于时间尺度分解与快速熵的特定辐射源识别技术;文献ADDINEN.CITE<EndNote><Cite><Author>张玉</Author><Year>2020</Year><RecNum>343</RecNum><DisplayText><styleface="superscript">[6]</style></DisplayText><record><rec-number>343</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1599726080">343</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>张玉</author><author>李天琪</author><author>张进</author><author>唐波</author></authors></contributors><auth-address>国防科技大学电子对抗学院;</auth-address><titles><title>基于集成固有时间尺度分解的IFF辐射源个体识别算法</title><secondary-title>电子与信息学报</secondary-title></titles><periodical><full-title>电子与信息学报</full-title></periodical><pages>430-437</pages><volume>42</volume><number>02</number><keywords><keyword>图像处理</keyword><keyword>敌我识别</keyword><keyword>辐射源个体识别</keyword><keyword>时频分析</keyword></keywords><dates><year>2020</year></dates><isbn>1009-5896</isbn><call-num>11-4494/TN</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"张玉,2020#343"6]针对辐射源识别技术中信号无意调制特征比较细微的原理,将信号划分为不同的模态,对每个模态进行时频图分析其纹理特征,将图像作为输入信号;文献ADDINEN.CITE<EndNote><Cite><Author>Chunyun</Author><Year>2010</Year><RecNum>155</RecNum><DisplayText><styleface="superscript">[7]</style></DisplayText><record><rec-number>155</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535552955">155</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>Chunyun,Song</author><author>Jianmin,Xu</author><author>Yi,Zhan</author></authors></contributors><titles><title>Amethodforspecificemitteridentificationbasedonempiricalmodedecomposition</title><secondary-title>2010IEEEInternationalConferenceonWirelessCommunications,NetworkingandInformationSecurity</secondary-title><alt-title>2010IEEEInternationalConferenceonWirelessCommunications,NetworkingandInformationSecurity</alt-title></titles><pages>54-57</pages><keywords><keyword>identification</keyword><keyword>signalprocessing</keyword><keyword>time-varyingnetworks</keyword><keyword>specificemitteridentification</keyword><keyword>empiricalmodedecomposition</keyword><keyword>radiosignals</keyword><keyword>radarsignals</keyword><keyword>nonlineartimeseries</keyword><keyword>timedomain</keyword><keyword>Waveletdistribution</keyword><keyword>Wigner-Villedistribution</keyword><keyword>Timedomainanalysis</keyword><keyword>Frequencyestimation</keyword><keyword>Waveletanalysis</keyword><keyword>Radiotransmitters</keyword><keyword>Biomedicalmeasurements</keyword><keyword>Radar</keyword><keyword>Spectralanalysis</keyword><keyword>Timeseriesanalysis</keyword><keyword>Parameterestimation</keyword><keyword>transients</keyword><keyword>non-stationary</keyword></keywords><dates><year>2010</year><pub-dates><date>25-27June2010</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/WCINS.2010.5541885</electronic-resource-num></record></Cite></EndNote>[\o"Chunyun,2010#155"7]结合经验模态分解技术,对辐射源信号进行模态分解而后对子模态进行时频估计;文献ADDINEN.CITE<EndNote><Cite><Author>Zhang</Author><Year>2016</Year><RecNum>159</RecNum><DisplayText><styleface="superscript">[8]</style></DisplayText><record><rec-number>159</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535553041">159</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>J.Zhang</author><author>F.Wang</author><author>O.A.Dobre</author><author>Z.Zhong</author></authors></contributors><titles><title>SpecificEmitterIdentificationviaHilbert–HuangTransforminSingle-HopandRelayingScenarios</title><secondary-title>IEEETransactionsonInformationForensicsandSecurity</secondary-title></titles><periodical><full-title>IEEETransactionsonInformationForensicsandSecurity</full-title></periodical><pages>1192-1205</pages><volume>11</volume><number>6</number><keywords><keyword>Hilberttransforms</keyword><keyword>poweramplifiers</keyword><keyword>signalprocessing</keyword><keyword>specificemitteridentification</keyword><keyword>Hilbert-Huangtransform</keyword><keyword>relayingscenarios</keyword><keyword>single-hopscenarios</keyword><keyword>SEIproblem</keyword><keyword>Hilbertspectrum</keyword><keyword>identificationfeature</keyword><keyword>Fisher'sdiscriminantratio</keyword><keyword>additivewhiteGaussiannoise</keyword><keyword>relayfingerprints</keyword><keyword>Featureextraction</keyword><keyword>Time-frequencyanalysis</keyword><keyword>Transforms</keyword><keyword>Supportvectormachines</keyword><keyword>Transientanalysis</keyword><keyword>Relays</keyword><keyword>Steady-state</keyword><keyword>Relay</keyword><keyword>Specificemitteridentification(SEI)</keyword></keywords><dates><year>2016</year></dates><isbn>1556-6013</isbn><urls></urls><electronic-resource-num>10.1109/TIFS.2016.2520908</electronic-resource-num></record></Cite></EndNote>[\o"Zhang,2016#159"8]提出了基于HHT变换的辐射源时频分布特征提取算法,对信号的能量熵和高阶矩等特征进行了提取,实验表明分类效果得到有效。高阶统计分析方向:高阶统计量主要指利用辐射源信号高阶谱分析技术,对从时域和频域的角度出发,从信号的高阶矩谱、功率谱、高阶累积量谱进行统计分析,目前在SEI领域中常使用的为高阶累积量谱,也称为高阶谱分析。与传统的信号功率谱分析不同,高阶谱能够从联合分析信号幅度和相位,而且因为信道中白噪声的经高阶谱变换后累计量为零,因此可以有效的滤除信道噪声对信号的影响,因此对于非线性非平稳非高斯信号具有较大优势。考虑到运算量和效率等问题,实际中常用信号3阶高阶谱,也被称为双谱。文献ADDINEN.CITE<EndNote><Cite><Author>王占领</Author><Year>2014</Year><RecNum>52</RecNum><DisplayText><styleface="superscript">[9]</style></DisplayText><record><rec-number>52</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1489633756">52</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>王占领</author><author>张登福</author><author>王世强</author></authors></contributors><auth-address>空军工程大学航空航天工程学院;93986部队;</auth-address><titles><title>雷达辐射源信号双谱二次特征提取方法</title><secondary-title>空军工程大学学报(自然科学版)</secondary-title></titles><periodical><full-title>空军工程大学学报(自然科学版)</full-title></periodical><pages>48-52</pages><volume>15</volume><number>01</number><keywords><keyword>高阶谱分析</keyword><keyword>双谱</keyword><keyword>雷达辐射源信号</keyword><keyword>特征提取</keyword><keyword>灰度共生矩阵</keyword></keywords><dates><year>2014</year></dates><isbn>1009-3516</isbn><call-num>61-1338/N</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"王占领,2014#52"9]提出一种利用信号灰度共生矩阵的辐射源识别方法;文献ADDINEN.CITE<EndNote><Cite><Author>Yao</Author><Year>2020</Year><RecNum>368</RecNum><DisplayText><styleface="superscript">[10]</style></DisplayText><record><rec-number>368</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622555843">368</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>Y.Yao</author><author>L.Yu</author><author>Y.Chen</author></authors></contributors><titles><title>SpecificEmitterIdentificationBasedonSquareIntegralBispectrumFeatures</title><secondary-title>2020IEEE20thInternationalConferenceonCommunicationTechnology(ICCT)</secondary-title><alt-title>2020IEEE20thInternationalConferenceonCommunicationTechnology(ICCT)</alt-title></titles><pages>1311-1314</pages><dates><year>2020</year><pub-dates><date>28-31Oct.2020</date></pub-dates></dates><isbn>2576-7828</isbn><urls></urls><electronic-resource-num>10.1109/ICCT50939.2020.9295681</electronic-resource-num></record></Cite></EndNote>[\o"Yao,2020#368"10]在研究信号时频分析基础上,提出一种基于平方积分双谱特征方法,有效降低信号特征维度提取计算量;文献ADDINEN.CITE<EndNote><Cite><Author>Ekramul</Author><Year>2014</Year><RecNum>370</RecNum><DisplayText><styleface="superscript">[11]</style></DisplayText><record><rec-number>370</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622595766">370</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>M.H.Ekramul</author><author>W.A.Jassim</author><author>M.S.A.Zilany</author></authors></contributors><titles><title>Effectsofnoiseonthefeaturesofbispectrum</title><secondary-title>2014IEEE19thInternationalFunctionalElectricalStimulationSocietyAnnualConference(IFESS)</secondary-title><alt-title>2014IEEE19thInternationalFunctionalElectricalStimulationSocietyAnnualConference(IFESS)</alt-title></titles><pages>1-4</pages><dates><year>2014</year><pub-dates><date>17-19Sept.2014</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/IFESS.2014.7036758</electronic-resource-num></record></Cite></EndNote>[\o"Ekramul,2014#370"11]提出利用高阶频谱(HOS)分析研究噪声对双谱统计特征的影响,检测信号线性、平稳性偏差;文献ADDINEN.CITE<EndNote><Cite><Author>Mei</Author><Year>2012</Year><RecNum>371</RecNum><DisplayText><styleface="superscript">[12]</style></DisplayText><record><rec-number>371</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622596027">371</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>J.Mei</author><author>L.Qiao</author><author>Y.Xiao</author></authors></contributors><titles><title>Weakfaultfeatureextractionofgearbox'sbearingbasedonEMD-bispectrum</title><secondary-title>20129thInternationalConferenceonFuzzySystemsandKnowledgeDiscovery</secondary-title><alt-title>20129thInternationalConferenceonFuzzySystemsandKnowledgeDiscovery</alt-title></titles><pages>1439-1443</pages><dates><year>2012</year><pub-dates><date>29-31May2012</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/FSKD.2012.6233990</electronic-resource-num></record></Cite></EndNote>[\o"Mei,2012#371"12]提出了一种EMD-双谱方法,将振动信号分解为一系列模态,消除交叉分量有效的降低噪声影响;文献ADDINEN.CITE<EndNote><Cite><Author>Lin</Author><Year>2020</Year><RecNum>369</RecNum><DisplayText><styleface="superscript">[13]</style></DisplayText><record><rec-number>369</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622556401">369</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>Y.Lin</author><author>J.Jia</author><author>S.Wang</author><author>B.Ge</author><author>S.Mao</author></authors></contributors><titles><title>WirelessDeviceIdentificationBasedonRadioFrequencyFingerprintFeatures</title><secondary-title>ICC2020-2020IEEEInternationalConferenceonCommunications(ICC)</secondary-title><alt-title>ICC2020-2020IEEEInternationalConferenceonCommunications(ICC)</alt-title></titles><pages>1-6</pages><dates><year>2020</year><pub-dates><date>7-11June2020</date></pub-dates></dates><isbn>1938-1883</isbn><urls></urls><electronic-resource-num>10.1109/ICC40277.2020.9149226</electronic-resource-num></record></Cite></EndNote>[\o"Lin,2020#369"13]研究辐射源信号稳态特征与暂态特征差异后,基于功率谱密度和分数阶傅里叶变换的基础上对双谱分析方法进行改进,提高了基于稳态特征的辐射源分类精度;文献ADDINEN.CITE<EndNote><Cite><Author>Kang</Author><Year>2016</Year><RecNum>143</RecNum><DisplayText><styleface="superscript">[14]</style></DisplayText><record><rec-number>143</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535507437">143</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>N.Kang</author><author>M.He</author><author>J.Han</author><author>B.Wang</author></authors></contributors><titles><title>RadaremitterfingerprintrecognitionbasedonbispectrumandSURFfeature</title><secondary-title>2016CIEInternationalConferenceonRadar(RADAR)</secondary-title><alt-title>2016CIEInternationalConferenceonRadar(RADAR)</alt-title></titles><pages>1-5</pages><keywords><keyword>electronicwarfare</keyword><keyword>featureextraction</keyword><keyword>fingerprintidentification</keyword><keyword>militaryradar</keyword><keyword>radarsignalprocessing</keyword><keyword>bispectrumtheory</keyword><keyword>SURFfeature</keyword><keyword>bispectrumprojection</keyword><keyword>radaremitterfingerprintrecognition</keyword><keyword>radaremitteridentification</keyword><keyword>radarsignals</keyword><keyword>Radar</keyword><keyword>Fingerprintrecognition</keyword><keyword>Gaussiannoise</keyword><keyword>Spectrogram</keyword><keyword>Transforms</keyword><keyword>Time-frequencyanalysis</keyword><keyword>bispectrum</keyword></keywords><dates><year>2016</year><pub-dates><date>10-13Oct.2016</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/RADAR.2016.8059588</electronic-resource-num></record></Cite></EndNote>[\o"Kang,2016#143"14]利用投影灰度图,将图像作为辐射源信号的表征方法,对信号进行分类识别;文献ADDINEN.CITE<EndNote><Cite><Author>王书豪</Author><Year>2019</Year><RecNum>367</RecNum><DisplayText><styleface="superscript">[15]</style></DisplayText><record><rec-number>367</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622555339">367</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>王书豪</author><author>阮怀林</author></authors></contributors><auth-address>国防科技大学电子对抗学院;</auth-address><titles><title>基于切片双谱多重分形特征的雷达信号识别算法</title><secondary-title>探测与控制学报</secondary-title></titles><periodical><full-title>探测与控制学报</full-title></periodical><pages>66-70</pages><volume>41</volume><number>05</number><keywords><keyword>切片双谱</keyword><keyword>多重分形</keyword><keyword>广义维数</keyword><keyword>支持向量机</keyword></keywords><dates><year>2019</year></dates><isbn>1008-1194</isbn><call-num>61-1316/TJ</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"王书豪,2019#367"15]针对现有算法对噪声敏感,提出基于信号广义维数和多重分形谱特征的辐射源识别方法。变分模态分解(VariationalModeDecomposition,VMD)ADDINEN.CITE<EndNote><Cite><Author>Dragomiretskiy</Author><Year>2014</Year><RecNum>328</RecNum><DisplayText><styleface="superscript">[16]</style></DisplayText><record><rec-number>328</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1598002548">328</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>K.Dragomiretskiy</author><author>D.Zosso</author></authors></contributors><titles><title>VariationalModeDecomposition</title><secondary-title>IEEETransactionsonSignalProcessing</secondary-title></titles><periodical><full-title>IEEETransactionsonSignalProcessing</full-title></periodical><pages>531-544</pages><volume>62</volume><number>3</number><keywords><keyword>signaldenoising</keyword><keyword>Wienerfilters</keyword><keyword>variationalmodedecomposition</keyword><keyword>empiricalmodedecomposition</keyword><keyword>EMD</keyword><keyword>decompositionproblem</keyword><keyword>synchrosqueezing</keyword><keyword>empiricalwavelets</keyword><keyword>recursivevariationaldecomposition</keyword><keyword>nonrecursivevariationalmode</keyword><keyword>Fourierdomain</keyword><keyword>narrow-bandprior</keyword><keyword>Wienerfilterdenoising</keyword><keyword>Frequencyestimation</keyword><keyword>Frequencymodulation</keyword><keyword>Bandwidth</keyword><keyword>Noise</keyword><keyword>Robustness</keyword><keyword>Wavelettransforms</keyword><keyword>AM-FM</keyword><keyword>augmentedLagrangian</keyword><keyword>Fouriertransform</keyword><keyword>Hilberttransform</keyword><keyword>modedecomposition</keyword><keyword>spectraldecomposition</keyword><keyword>variationalproblem</keyword><keyword>Wienerfilter</keyword></keywords><dates><year>2014</year></dates><isbn>1941-0476</isbn><urls></urls><electronic-resource-num>10.1109/TSP.2013.2288675</electronic-resource-num></record></Cite></EndNote>[\o"Dragomiretskiy,2014#328"16]是学者在EMD的研究基础上提出的自适应时频分析分析方法。与EMD分解的结果不同,VMD通过引入拉格朗日函数的方法,将信号分解为多个窄幅子模态。文献ADDINEN.CITEADDINEN.CITE.DATA[\o"Gok,2020#305"17]针对辐射源识别提出一种利用脉冲到达时间处理,通过VMD对信号分解后将包络以及相位信息送分类器进行识别分析一;文献ADDINEN.CITE<EndNote><Cite><Author>He</Author><Year>2020</Year><RecNum>303</RecNum><DisplayText><styleface="superscript">[18]</style></DisplayText><record><rec-number>303</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1597213276">303</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>B.He</author><author>F.Wang</author></authors></contributors><titles><title>CooperativeSpecificEmitterIdentificationviaMultipleDistortedReceivers</title><secondary-title>IEEETransactionsonInformationForensicsandSecurity</secondary-title></titles><periodical><full-title>IEEETransactionsonInformationForensicsandSecurity</full-title></periodical><pages>3791-3806</pages><volume>15</volume><keywords><keyword>Receivers</keyword><keyword>Featureextraction</keyword><keyword>Distortion</keyword><keyword>Radiotransmitters</keyword><keyword>Transientanalysis</keyword><keyword>Time-frequencyanalysis</keyword><keyword>Transforms</keyword><keyword>Empiricalmodedecomposition(EMD)</keyword><keyword>intrinsictime-scaledecomposition(ITD)</keyword><keyword>receiverdistortion</keyword><keyword>specificemitteridentification</keyword><keyword>variationalmodedecomposition(VMD)</keyword></keywords><dates><year>2020</year></dates><isbn>1556-6021</isbn><urls></urls><electronic-resource-num>10.1109/TIFS.2020.3001721</electronic-resource-num></record></Cite></EndNote>[\o"He,2020#303"18]提出基于信号分解的分别基于内在时间尺度分解(ITD)和变分模式分解(VMD)的两种方案,并利用支持向量机进行分类识别,实现了在衰落信道多接收机协作的特定辐射源识别;文献ADDINEN.CITE<EndNote><Cite><Author>王振威</Author><Year>2015</Year><RecNum>340</RecNum><DisplayText><styleface="superscript">[19]</style></DisplayText><record><rec-number>340</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1599724745">340</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>王振威</author></authors><tertiary-authors><author>姜万录,</author></tertiary-authors></contributors><titles><title>基于变分模态分解的故障诊断方法研究</title></titles><keywords><keyword>机械设备</keyword><keyword>故障识别</keyword><keyword>混沌粒子群</keyword><keyword>变分模态分解</keyword><keyword>特征提取</keyword><keyword>核模糊C均值聚类</keyword></keywords><dates><year>2015</year></dates><publisher>燕山大学</publisher><work-type>硕士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"王振威,2015#340"19]提出一种基于混沌粒子群理论的VMD改进算法,选取各个子模态包络为基准,确定分解参数最佳组合;文献ADDINEN.CITE<EndNote><Cite><Author>Biswal</Author><Year>2019</Year><RecNum>372</RecNum><DisplayText><styleface="superscript">[20]</style></DisplayText><record><rec-number>372</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622596219">372</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>G.Biswal</author><author>A.B.Kambhampati</author><author>B.Ramkumar</author><author>M.S.Manikandan</author></authors></contributors><titles><title>SpecificEmitterIdentificationOverFadingChannels</title><secondary-title>2019InternationalConferenceonRangeTechnology(ICORT)</secondary-title><alt-title>2019InternationalConferenceonRangeTechnology(ICORT)</alt-title></titles><pages>1-5</pages><dates><year>2019</year><pub-dates><date>15-17Feb.2019</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/ICORT46471.2019.9069647</electronic-resource-num></record></Cite></EndNote>[\o"Biswal,2019#372"20]通过研究特定辐射源非线性特性,对衰落信道上信号的VMD能量熵、一阶矩和相关系数等特征进行了提取;文献ADDINEN.CITE<EndNote><Cite><Author>Gok</Author><Year>2017</Year><RecNum>373</RecNum><DisplayText><styleface="superscript">[21]</style></DisplayText><record><rec-number>373</rec-number><foreign-keys

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论