中考数学一轮复习易错点练习05四边形(原卷版)_第1页
中考数学一轮复习易错点练习05四边形(原卷版)_第2页
中考数学一轮复习易错点练习05四边形(原卷版)_第3页
中考数学一轮复习易错点练习05四边形(原卷版)_第4页
中考数学一轮复习易错点练习05四边形(原卷版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

易错点05四边形多边形的内角与外角多边形内角与外角(1)多边形内角和定理:(n-2)•180°(n≥3且n为整数)此公式推导的基本方法是从n边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.(2)多边形的外角和等于360°.多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.1.(2022秋•乌鲁木齐期末)一个多边形的内角和为720°,则从这多边形的一个顶点最多可以引出几条对角线?()A.3条 B.4条 C.5条 D.2条2.(2022秋•船营区校级期末)如图,在四边形ABCD中,∠A=45°.直线EF分别与边AD,AB分别相交于点E,F,则∠1+∠2的度数为()A.245° B.225° C.145° D.135°3.(2022秋•东昌府区校级期末)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是()A.2∠A=∠1+∠2 B.3∠A=2∠1+∠2 C.∠A=∠1+∠2 D.3∠A=2∠1+2∠24.(2022秋•荣昌区期末)如图,一张长方形纸片ABCD,它的四个内角都是直角,将其沿BD折叠后,点C落在点E处,BE交AD于点F,再将DE沿DF折叠后,点E落在点G处,若DG刚好平分∠ADB,那么∠DBF的度数是()A.30° B.36° C.45° D.50°5.(2022秋•通州区期末)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC;90°为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45°是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是14.在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是()A.16 B.19 C.21 D.2802平行四边形的性质与判定1.平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.2.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.1.(2022秋•莱阳市期末)如图,在▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E,若AB=6,AD=8,则EF的长度为()A.4 B.5 C.6 D.72.(2022秋•任城区期末)已知,在平行四边形ABCD中,∠A的平分线分BC成4cm和3cm两条线段,则平行四边形ABCD的周长为()cm.A.11 B.22 C.20 D.20或223.(2022秋•张店区校级期末)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD上,∠EBA=60°,则的值是()A. B. C. D.4.(2022秋•南关区校级期末)如图,在平行四边形ABCD中,E,F是对角线BD上两个点,且BE=DF.(1)求证:AE=CF;(2)若AD=AE,∠DFC=140°,求∠DAE的度数.5.(2022秋•绥中县校级期末)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.6.(2023•市南区校级一模)如图,在▱ABCD中,O是对角线AC、BD的交点,延长边CD到点F,使DF=DC,过点F作EF∥AC,连接OF、EC.(1)求证△ODC≌△EDF.(2)连接AF,已知.(从以下两个条件中选择一个作为已知,填写序号),请判断四边形OCEF的形状,并证明你的结论.条件①:AF=FC且AC=2DC;条件②:OD=DC且∠BEC=45°.7.(2022秋•泰山区校级期末)如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC.(1)求证:①△AOE≌△COF;②四边形ABCD为平行四边形;(2)过点O作EF⊥BD,交AD于点E,交BC于点F,连接BE,若∠BAD=100°,∠DBF=32°,求∠ABE的度数.8.(2022秋•招远市期末)如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=80°,∠DCE=30°,求∠CBE的度数.03矩形的性质与判定1.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.2.矩形的判定(1)矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)(2)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.1.(2022秋•吉安县月考)下列说法正确的是()A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分 C.对角线互相垂直的四边形是菱形 D.一组对边相等,另一组对边平行的四边形是平行四边形2.(2022春•关岭县期末)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则AM的最小值是()A.2.4 B.2 C.1.5 D.1.23.(2022春•安新县期末)如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.44.(2022•陕西模拟)如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=()A. B. C. D.5.(2022秋•南关区校级期末)如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形.(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=6,则▱ABCD的面积为.6.(2022秋•绿园区校级期末)如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,BE=DF,∠AEC=90°.(1)求证:四边形AECF是矩形;(2)连接BF,若AB=6,∠ABC=60°,BF平分∠ABC,则平行四边形ABCD的面积为.7.(2022秋•皇姑区校级期末)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)连接AE,交CD于点F,当∠ADB=60°,AD=2时,直接写出EA的长.8.(2022•东宝区校级模拟)如图,已知四边形ABCD是平行四边形,AB=8,BC=x.连接对角线AC,BD交于点O.过点O作CD的平行线分别交AD,BC于点E,F,连接EC,∠EFC=90°.(1)求证:四边形ABCD是矩形;(2)求tan∠AOE的值(用含x的式子表示).04菱形的性质与判定1.菱形的性质(1)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(2)菱形的面积计算①利用平行四边形的面积公式.②菱形面积=1/2ab.(a、b是两条对角线的长度)2.菱形的判定①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形1.(2022秋•包头期末)如图,某同学剪了两条宽均为的纸条,交叉叠放在一起,且它们的交角为60°,则它们重叠部分的面积为()A.3 B.2 C.3 D.62.(2022秋•李沧区期中)如图,两张等宽的纸条交叉叠放在一起,重合部分构成一个四边形ABCD,在其中一张纸条转动的过程中,下列结论一定成立的是()A.AD=CD B.四边形ABCD面积不变 C.AC=BD D.四边形ABCD周长不变3.(2022春•南岗区校级期中)如图,菱形ABCD中,AC与BD交于点O,CD=2OB,E为CD延长线上一点,使得DE=CD,连结BE,分别交AC、AD于点F、G,连结OG,AE,则下列结论:①∠ABC=120°;②;③四边形ODEG与四边形OBAG的面积相等;④由点A、B、D、E构成的四边形是菱形.其中正确的结论个数是()A.4 B.3 C.2 D.14.(2022•龙岩模拟)在平面直角坐标系xOy中,将位于第三象限的点A(α,b)和位于第二象限的点B(m,b+1)先向下平移1个单位,再向右平移h个单位得到点C和点D,连接AD,过点B作AD的垂线l,在l上任取一点E,连接DE,则DE的最小值为2.下列几个结论:①直线l与y轴平行;②h=2;③四边形ACDB是菱形;④若点F(S,t)是直线BD上的点,则s+2t=m+2b+2.其中正确结论的个数为()A.1 B.2 C.3 D.45.(2022秋•城关区校级期末)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若,求菱形AEBD的面积.6.(2023•黔江区一模)如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.7.(2022秋•南岗区校级期中)在平行四边形ABCD中,对角线AC、BD交于点O,过点O作EF⊥BD,交AD于点E,交BC于点F,连接BE、DF.(1)如图1,求证:四边形EBFD是菱形;(2)如图2,∠ABC=90°,AE=EO,请直接写出图中的所有等边三角形.8.(2022秋•绿园区校级期中)如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,BD=6,BC=3,则AE=.05正方形的性质与判定1.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.2.正方形的判定正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.1.(2022秋•高州市月考)下列是关于某个四边形的三个结论:①它的对角线互相垂直;②它是一个正方形;③它是一个菱形.下列推理过程正确的是()A.由②推出③,由③推出① B.由①推出②,由②推出③ C.由③推出①,由①推出③ D.由①推出③,由③推出②2.(2022春•丹江口市期末)如图,四边形ABCD中,∠A=∠B=90°,边AB=BC=6,点E在AB边上,∠DCE=45°,DE=5,则BE长为()A.2 B.3 C.4 D.2或33.(2022春•襄州区期末)如图,点D,E,F分别是△ABC三边的中点,则下列判断:①四边形AEDF一定是平行四边形;②若AD平分∠BAC,则四边形AEDF是正方形;③若AD⊥BC,则四边形AEDF是菱形;④若∠BAC=90°,则四边形AEDF是矩形.正确的是()A.①②③④ B.①④ C.①③④ D.①②④4.(2022春•临沭县期末)七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD中,BD为对角线,E,F分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.则在剪开之前,关于该图形,下列说法正确的有()①图中的三角形都是等腰直角三角形;②四边形MPEB是菱形;③四边形PFDM的面积占正方形ABCD面积的;④四边形OPFN是正方形.A.①②③ B.①③ C.①③④ D.②④5.(2022•南京模拟)如图,正方形ABCD中,动点E在AC上,AF⊥AC,垂足为A,AF=AE,连接BF.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件不变),四边形AFBE是正方形吗?请说明理由.6.(2022秋•市中区校级月考)如图,在正方形ABCD和平行四边形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.(1)求证:四边形BEFG是矩形;(2)PG与PC的夹角为度时,四边形BEFG是正方形,请说明理由.7.(2022•浑南区二模)(1)问题情境:如图,正方形ABCD中,AB=6,点E为射线BC上一动点,将△ABE沿AE所在直线翻折,得到△AFE,延长EF,射线EF与射线CD交于点G,连接AG.①当点E在线段BC上时,求证:DG=FG;②当CE=3时,则CG的长为.(2)思维深化:在△ABC中,∠BAC=45°,AD为BC边上的高,且BD=+1,CD=﹣1,请直接写出AD的长.8.(2022春•南谯区校级月考)如图1,四边形ABCD为正方形,E为对角线AC上一点,连接DE,BE.(1)求证:BE=DE;(2)如图2,过点E作EF⊥DE,交边BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②若正方形ABCD的边长为9,CG=3,求正方形DEFG的边长.06中点四边形1.(2023春·八年级课时练习)如图所示,顺次连接四边形ABCD各边中点得到四边形EFGH,使四边形EFGH为正方形,应添加的条件分别是(

)A.AB∥CD且AB=DC B.AB=CDC.AB∥CD且AC⊥BD D.AC=BD2.(2022秋·广东清远·九年级统考期中)如图,四边形ABCD中,E、F、G、H分别是AB、DC、CA、DB的中点,若中点四边形EHFG是菱形,那么原四边形ABCD满足什么条件(

)A.AD=BC B.AC⊥BDC.AC=BD D.∠DAB+∠ABC=90°3.(2022秋·山西运城·九年级校考阶段练习)定义:对于一个四边形,我们把依次连接它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是_____________.A.平行四边形

B.矩形

C.菱形

D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD的两条结论;问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE和正方形ACFG,连接BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.4.(2022秋·九年级课时练习)我们给出如下定义:顺次连接任意一个四边形各边中所得的四边形叫中点四边形.(1)如图1,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,中点四边形EFGH是.(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点.猜想中点四边形EFGH的形状,并证明你的猜想.(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).07四边形与最值问题1.(2023春·江苏·八年级专题练习)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,C,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值.2.(2022秋·全国·九年级专题练习)如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点(1)求证:DE∥(2)当△ABD满足什么条件时,四边形DEBF是菱形(不需要证明)(3)请利用备用图分析,在(2)的条件下,若BE=2,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,求PF+PM的最小值.3.(2021春·河北沧州·八年级统考期末)如图,在平行四边形ABCD中,BC=AC,E、F分别是AB、CD的中点,连接CE、AF.(1)求证:四边形AECF是矩形;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.(3)在(2)的条件下,若AE=4,点M为EC中点,当点P在线段AC上运动时,求PE+PM的最小值.4.(2022·江苏·九年级专题练习)如图,在矩形ABCD中,AB=3,BC=5,P是边AD上一点,将△ABP沿着直线PB折叠,得到△EBP.(1)请在备用图上用没有刻度的直尺和圆规,在边AD上作出一点P,使BE平分∠PBC,并求出此时△BEC的面积;(作图要求:保留作图痕迹,不写作法.)(2)连接CE并延长交线段AD于点Q,则AQ的最大值为__________.(直接写出答案)5.(2020·湖北武汉·校考模拟预测)已知菱形ABCD的边长为2,∠A=60°,点E、F分别在边AD、AB上,将△AEF沿EF折叠,使得点A的对应点A’恰好落在边CD上.(1)延长CB、A′F交于点H,求证:A'(2)若A′点为CD的中点,求EF的长;(3)AA′交EF于点G,再将四边形纸片BCA′F折叠,使C点的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N,连接C′G,则C′G的最小值为______.08四边形与动点问题1.(2022秋·吉林长春·八年级校考期末)如图,在▱ABCD中,∠BAC=90°,CD=3,AC=4.动点P从点A出发沿AD以1cm/s速度向终点D运动,同时点Q从点C出发,以4cm/s速度沿射线CB运动,当点(1)CB的长为______.(2)用含t的代数式表示线段QB的长.(3)连接PQ,①是否存在t的值,使得PQ与AC互相平分?若存在,求出t的值;若不存在,请说明理由;②是否存在t的值,使得PQ与AB互相平分?若存在,求出t的值;若不存在,请说明理由.(4)若点P关于直线AQ对称的点恰好落在直线AB上,请直接写出t的值.2.(2022秋·山东聊城·八年级校考期末)已知正方形ABCD中,AB=BC=CD=DA=8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论