2025年外研版高二数学上册阶段测试试卷含答案_第1页
2025年外研版高二数学上册阶段测试试卷含答案_第2页
2025年外研版高二数学上册阶段测试试卷含答案_第3页
2025年外研版高二数学上册阶段测试试卷含答案_第4页
2025年外研版高二数学上册阶段测试试卷含答案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年外研版高二数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、若任意x∈A,则就称集合A是“和谐”集合,则在集合的所有127个非空子集中任取一个集合;是“和谐”集合的概率为()

A.

B.

C.

D.

2、运行如图所示的程序框图,则输出的数是5的倍数的概率为()A.B.C.D.3、在直角坐标系内,满足不等式x2-y2≥0的点(x,y)的集合(用阴影表示)是()4、【题文】已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cmB.4cmC.6cmD.8cm5、【题文】数列满足且则此数列第5项是A.15B.255C.16D.636、已知第一象限的点在直线上,则的最小值为()A.B.C.D.评卷人得分二、填空题(共5题,共10分)7、如图所示,在杨辉三角中,斜线上方从1开始按箭头所示的数组成一个锯齿形数列1,3,3,4,6,5,10,,记此数列为{an},则a21=____.

8、函数任取使的概率为____.9、【题文】已知观察上述两等式的规律,请你写出一般性的命题:____。10、设则=______.11、直线l将圆:x2+y2-2x-4y=0平分,且不过第四象限,那么l的斜率的取值范围是____________.评卷人得分三、作图题(共6题,共12分)12、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

13、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)14、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)15、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

16、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)17、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共1题,共8分)18、(本题满分12分)如图,四棱锥P—ABCD的底面是矩形,PA⊥面ABCD,PA=2AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.(1)求EF的长;(2)证明:EF⊥PC.评卷人得分五、计算题(共4题,共36分)19、如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.20、1.(本小题满分12分)已知函数在处取得极值.(1)求实数a的值;(2)若关于x的方程在[,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)证明:(参考数据:ln2≈0.6931).21、1.本小题满分12分)对于任意的实数不等式恒成立,记实数的最大值是(1)求的值;(2)解不等式22、1.(本小题满分12分)已知数列满足且()。(1)求的值;(2)猜想数列的通项公式,并用数学归纳法加以证明。评卷人得分六、综合题(共3题,共6分)23、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.

(1)求抛物线的解析式;

(2)求当AD+CD最小时点D的坐标;

(3)以点A为圆心;以AD为半径作⊙A.

①证明:当AD+CD最小时;直线BD与⊙A相切;

②写出直线BD与⊙A相切时,D点的另一个坐标:____.24、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.25、已知等差数列{an}的前n项和为Sn,且a1=1,S3=0.参考答案一、选择题(共6题,共12分)1、A【分析】

基本事件总数为127.

其中包含的“和谐”集合为:{2},{5},{1},{-1},{2,1},{2,-1},{2,5},{-1,1},{-1,5,},{1,5,},{-1,1,5,2}

,{-1,5,2},{1,5,2},{-1,1,5,},{-1,1,2}共15件.

所以“和谐”集合的概率为.

故选A.

【解析】【答案】根据“和谐”集合的概念求出集合M的所以“和谐”集合;在利用古典概型的概率公式求出概率即可.

2、A【分析】【解析】试题分析:由程序框图知,运行50次,输出50个数;输出的k为1,3,5,,99.其中为5的倍数的有5,15,25,,95共10个数,所以输出的数是5的倍数的概率为=考点:本题主要考查程序框图,古典概型概率的计算。【解析】【答案】A3、B【分析】【解析】试题分析:由x2-y2≥0得:即或再有线性规划的方法画出即可。考点:本题考查二元一次不等式(组)与平面区域.【解析】【答案】B.4、C【分析】【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).【解析】【答案】C5、B【分析】【解析】由且得【解析】【答案】B6、A【分析】【分析】因为点在直线上,所以即因为点为第一象限的点,所以所以

【点评】此类题目中,利用“1”的整体代换只用了一次基本不等式,可以保证等号能够取到。利用基本不等式时,要注意“一正二定三相等”三个条件缺一不可.二、填空题(共5题,共10分)7、略

【分析】

根据图中锯齿形数列的排列;发现。

a1=1,a3=3=1+2,a5=6=1+2+3;;

∴a21=1+2+3++11==66.

故答案为:66.

【解析】【答案】由图中锯齿形数列排列,发现规律:奇数项的第n项可以表示成正整数的前n项和的形式,偶数项构成以3为首项,公差是1的等差数列.由此再结合等差数列的通项公式,即可得到a21的值.

8、略

【分析】【解析】

函数任取使结合二次函数图像和几何概型概率公式得到为【解析】【答案】9、略

【分析】【解析】略【解析】【答案】10、略

【分析】解:由于定义当x∈[1,e]时,f(x)=

则=

==

=

故答案为.

由于函数f(x)为分段函数,则=再根据微积分基本定理,即可得到定积分的值.

本题考查微积分基本定理,要注意被积函数为分段函数时,在每段的端点处,都应使函数有意义.【解析】11、略

【分析】解:直线l将圆:x2+y2-2x-4y=0平分;直线过圆心,圆的方程可知圆心(1,2),且不通过第四象限;

斜率最大值是2;如图.

那么l的斜率的取值范围是[0;2]

故答案为:[0,2].【解析】[0,2]三、作图题(共6题,共12分)12、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

13、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.14、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.15、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

16、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.17、解:画三棱锥可分三步完成。

第一步:画底面﹣﹣画一个三角形;

第二步:确定顶点﹣﹣在底面外任一点;

第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.

画四棱可分三步完成。

第一步:画一个四棱锥;

第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;

第三步:将多余线段擦去.

【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、解答题(共1题,共8分)18、略

【分析】【解析】试题分析:(1)以A为原点,分别为x,y,z轴建立直角坐标系,2分由条件知:AF=2,3分∴F(0,2,0),P(0,0,2),C(8,6,0).4分从而E(4,3,),∴EF==6.6分(2)证明:=(-4,-1,-),=(8,6,-2),8分∵=-4×8+(-1)×6+(-)×(-2)=0,10分∴EF⊥PC.12分考点:利用空间向量求距离证明垂直关系【解析】【答案】(1)6(2)见解析五、计算题(共4题,共36分)19、略

【分析】【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【解析】【解答】解:如图;连接AE;

因为点C关于BD的对称点为点A;

所以PE+PC=PE+AP;

根据两点之间线段最短可得AE就是AP+PE的最小值;

∵正方形ABCD的边长为8cm;CE=2cm;

∴BE=6cm;

∴AE==10cm.

∴PE+PC的最小值是10cm.20、略

【分析】【解析】

(1)f'(x)=1+,由题意,得f'(1)=0Þa=02分(2)由(1)知f(x)=x-lnx∴f(x)+2x=x2+bóx-lnx+2x=x2+bóx2-3x+lnx+b=0设g(x)=x2-3x+lnx+b(x>0)则g'(x)=2x-3+=4分当x变化时,g'(x),g(x)的变化情况如下表。x(0,)(,1)1(1,2)2g'(x)+0-0+G(x)↗极大值↘极小值↗b-2+ln2当x=1时,g(x)最小值=g(1)=b-2,g()=b--ln2,g(2)=b-2+ln2∵方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根高考+资-源-网由ÞÞ+ln2≤b≤28分(3)∵k-f(k)=lnk∴nk=2ó(n∈N,n≥2)设Φ(x)=lnx-(x2-1)则Φ'(x)=-=当x≥2时,Φ'(x)<0Þ函数Φ(x)在[2,+∞)上是减函数,∴Φ(x)≤Φ(2)=ln2-<0Þlnx<(x2-1)∴当x≥2时,∴>2[(1-)+(-)+(-)+(-)+()]=2(1+-)=.∴原不等式成立.12分'【解析】【答案】(1)a=0(2)+ln2≤b≤2(3)原不等式成立.21、略

【分析】【解析】

(1)由绝对值不等式,有那么对于只需即则4分(2)当时:即则当时:即则当时:即则10分那么不等式的解集为12分【解析】【答案】(1)(2)22、略

【分析】【解析】

(1)由题得又则3分(2)猜想5分证明:①当时,故命题成立。②假设当时命题成立,即7分则当时,故命题也成立。11分综上,对一切有成立。12分【解析】【答案】(1)(2)有成立。六、综合题(共3题,共6分)23、略

【分析】【分析】(1)由待定系数法可求得抛物线的解析式.

(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.

∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;

设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.

(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:

(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)

将(0;3)代入上式,得3=a(0+1)(0-3).

解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).

即y=-x2+2x+3.(3分)

(2)连接BC;交直线l于点D.

∵点B与点A关于直线l对称;

∴AD=BD.(4分)

∴AD+CD=BD+CD=BC.

由“两点之间;线段最短”的原理可知:

此时AD+CD最小;点D的位置即为所求.(5分)

设直线BC的解析式为y=kx+b;

由直线BC过点(3;0),(0,3);

解这个方程组,得

∴直线BC的解析式为y=-x+3.(6分)

由(1)知:对称轴l为;即x=1.

将x=1代入y=-x+3;得y=-1+3=2.

∴点D的坐标为(1;2).(7分)

说明:用相似三角形或三角函数求点D的坐标也可;答案正确给(2分).

(3)①连接AD.设直线l与x轴的交点记为点E.

由(2)知:当AD+CD最小时;点D的坐标为(1,2).

∴DE=AE=BE=2.

∴∠DAB=∠DBA=45度.(8分)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论