




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AHYBRIDCOGNITIVEMODELFOR
MACHINEAGENTSINPROJECTAND
ACTIONTEAMS
DISSERTATION
JoshuaA.Lapso,Major,USAFAFIT-ENG-DS-23-D-031
DEPARTMENTOFTHEAIRFORCEAIRUNIVERSITY
AIRFORCEINSTITUTEOFTECHNOLOGY
Wright-PattersonAirForceBase,Ohio
DISTRIBUTIONSTATEMENTA
APPROVEDFORPUBLICRELEASE;DISTRIBUTIONUNLIMITED.
TheviewsexpressedinthisdocumentarethoseoftheauthoranddonotreflecttheofficialpolicyorpositionoftheUnitedStatesAirForce,theUnitedStatesDepartmentofDefenseortheUnitedStatesGovernment.ThismaterialisdeclaredaworkoftheU.S.GovernmentandisnotsubjecttocopyrightprotectionintheUnitedStates.
AFIT-ENG-DS-23-D-031
AHYBRIDCOGNITIVEMODELFOR
MACHINEAGENTSINPROJECTANDACTIONTEAMS
DISSERTATION
PresentedtotheFaculty
GraduateSchoolofEngineeringandManagement
AirForceInstituteofTechnology
AirUniversity
AirEducationandTrainingCommand
inPartialFulfillmentoftheRequirementsforthe
DegreeofDoctorofPhilosophyinComputerEngineering
JoshuaA.Lapso,B.S.C.E.,M.S.C.O.Major,USAF
21December2023
DISTRIBUTIONSTATEMENTA
APPROVEDFORPUBLICRELEASE;DISTRIBUTIONUNLIMITED.
AFIT-ENG-DS-23-D-031
AHYBRIDCOGNITIVEMODELFOR
MACHINEAGENTSINPROJECTANDACTIONTEAMS
DISSERTATION
JoshuaA.Lapso,B.S.C.E.,M.S.C.O.
Major,USAF
CommitteeMembership:
Dr.GilbertL.PetersonChairman
Dr.MichaelE.MillerMember
Dr.DouglasD.HodsonMember
Dr.LarryW.BurggrafDean’sRepresentative
iv
AFIT-ENG-DS-23-D-031
Abstract
Theinteractionsbetweenhumansandmachineagentsareubiquitousandperme-atetheconceptualboundariesoforganizedgroupsandactivities.Highperforminghumanteamstranscendcomplexdomainuncertaintybyachievinganemergentstateofsharedcognition,inwhichknowledgeisorganized,represented,anddistributedtoteammembersforrapidexecution.However,thisrequiresthatindividualsemitperceivablequalitiesuponwhichothermemberscanmakeinferencesaboutintent.Inpursuitoffuturehumanandmachineteamstudies,thisresearchpresentsahy-bridcognitivemodelformachineagentsinfullycooperativeandsemi-cooperativeactionandprojectteams.Thehybridcognitivemodelunifiesthecharacteristicsofthesharedmentalmodelandtransactivememorysystem.Theresultantmodelfacilitatesanytimeselectionoverthetwocognitiverepresentationswiththecomputa-tionalcomplexityofasinglemodel.Evaluationofthehybridcognitivemodeloccursinmulti-agentdomainswithincreasingcomplexityandlevelsofcooperation.Agentper-formanceisassessedaccordingtofourcognitivecharacteristicsthatcaptureaspectsofthenaturesandformsofcognitionfoundinprojectandactionteams.Thestudiesutilizeamixedmethodsapproachintheanalysisoffourestablishedcharacteristicsandmeasures.Theresultsdemonstratethatagentsusingthecognitivemodelformalignedrepresentationsthatencodestructural,perceptual,andinterpretivecognitiveforms.Additionally,theresultssuggestthatagentsemployingthehybridcognitivemodelcanswitchbetweencompositionalandcompilationalnaturesofemergenceasnecessarytointegratebehaviorsorknowledge.
v
Acknowledgements
Tomyresearchadvisorandmentor
Thankyouforinvestingyourtimeinme.Thankyouforhelpingmegrowasascientist.Thankyouforpatientlyguidingmethroughthisacademicendeavorandsupportingmeamidthepersonalchallenges.
Tomycommitteemembers
Thankyouforalltheinvaluableinsightsandfeedback.YoumadeanincredibleimpactonmeandIlookforwardtofuturecollaborations.
Tothedepartmentleadership
Thankyouforencouragingmethroughoutthisjourneyandkeepingmeoptimistic.I’mproudtobeamemberofthisfacultyteam.
Tomywife
Mahalagakongasawa,thankyouformakingthisdreampossible.Thankyouforsacrificingtimeandenergytokeepmegoing.Thankyouforpickinguptheslackandbeingthebestmemberofourteam.
Tomykids
Thankyouforinspiringme.Thankyouforbelievinginme.Thankyouforremindingmetotakebreaksandshareinyourjoy.Papalovesyou!
JoshuaA.Lapso
vi
TableofContents
Page
Abstract iv
Acknowledgements v
ListofFigures viii
ListofTables x
I.Introduction 1
1.1ProposedResearch 4
1.2AssumptionsandLimitations 5
1.3ModelImplementation 6
1.4EvaluationMeasures 8
1.5SummaryofRemainingSections 11
II.RelatedWork 12
2.1Teams 12
2.2SharedCognition 14
2.3CausalityandBayesianModels 21
2.4MachineAgentModelsandGameTheory 22
2.5ReinforcementLearning 26
2.6Summary 27
III.TheHybridCognitiveModelforMachineAgents:
Formalization,Generalization,andProblemDomains 28
3.1CognitiveTeamModels 28
Teams 29
CognitiveModelsforAdviceTeams 30
CognitiveModelsforProductionTeams 33
CognitiveModelsforProjectandActionTeams 35
3.2Formalization 36
3.3GeneralizedGraphicalModelsandAlgorithmicForms 38
3.4ProblemDomains 44
Triage 44
IncidentResponse 45
Diplomacy 47
vii
Page
IV.StudyingHCMPerformanceinCollaborativeProjectTeams 49
4.1Introduction 50
4.2SpecializedInstantiationforCollaborativeProject
Teams 52
4.3PreliminaryEvaluation:FullyFactoredBeliefs 57
4.4Experimentation 59
4.5Results 62
Characteristic1(C1) 62
Characteristic2(C2) 63
Characteristic3(C3) 64
4.6Conclusion 66
V.CognitiveTeamModelsinPressDiplomacy 67
5.1Introduction 67
5.2AHybridCognitiveModelforPressDiplomacy 70
ModelFormulation 71
GraphicalModel 73
ModelElements 73
AlgorithmicApproach 78
5.3DiplomacyVignettes 84
PostureGameStage 84
EarlyGameStage 88
MiddleGameStage 91
5.4Results 95
ParameterTuning 95
Characteristic4(C4) 97
5.5Summary 99
VI.ConclusionandFutureWork 101
6.1SummaryofContributions 101
RetrospectiononFormalizingtheHCM 102
6.2FutureWork 105
Bibliography 107
viii
ListofFigures
FigurePage
1Acomparisonofthenatureofemergence 15
2Acomparisonofsharedmentalalignment 18
3Ademonstrationoftransactiveencoding 20
4AgeneralizedDBM 22
5Partiallyobservablestochasticgames 23
6Individualencoding 31
7Transactiveinterpretation 32
8Transactiveencoding 33
9Individualandsharedmentalmodels 34
10AvisualizationoftheHCMforthreeteammembers 36
11Acomparisonofactiveelementsinthehybridcognitive
model 37
12TheHCMasaDBNfortwoagents 39
13AflowchartforatwoHCMagents 40
14TheHCMasaDBNforfullyobservabledomains 42
15AtwoagentvisualizationoftheTriageproblemdomain 44
16AnabstractdiscretizationoftheIncidentResponse
domain 46
17TheDiplomacyGameBoard[1] 47
18TheHCMasaDBNformultipleagents 55
19Averagecumulativerewards 58
20Beliefstatetrackingaccuracy 59
21AnabstractdiscretizationoftheIncidentResponse
domain 60
ix
FigurePage
22Cumulativemessageexchanges 64
23Internalstatetrackingaccuracy 65
24TheHCMasaDBNforPressDiplomacy 74
25Theinternalcognitivestatetransitions 74
26AnorientationalviewofaDiplomacyPower 77
27Anorientationalviewofeachpowernodeconnectedby
weightededges 77
28Austria’scognitiverepresentationatthebeginningof
play 85
29Austria’scognitiverepresentationafterthefirst
Diplomaticphase 87
30Germany’spriorcognitiverepresentationintheearly
gamestage 89
31Germany’sposteriorcognitiverepresentationinthe
earlygamestage 90
32Turkey’spriorcognitiverepresentationinthemiddle
gamestage 93
33Turkey’sposteriorcognitiverepresentationinthe
middlegamestage 94
34RMSerrorforparticlecountinsampledvariables 96
35RMSerrorforDutchtracewithingamestages 97
36PointswonbyeachpowerplayedbyanHCMagent
over840games 99
37Cumulativepointswonbyeachpowerplayedbyan
HCMagentatdiscreteintervalsthroughoutthe120
repeatedgames 100
x
ListofTables
TablePage
1Acomparisonofabstractteamtypes 13
2CharacteristicsofSMMsandTMSs[2] 17
3Domaincomplexityforvariousagentconfigurations 63
4HCMWeightingElements 76
5Errormatrixbetweenprojectedandactualordersets
duringtheposturestage 87
6Theerrormatrixbetweenprojectedandactualorder
setsduringtheearlystage 91
7Theerrormatrixbetweenprojectedandactualorder
setsduringthemiddlestage 95
1
AHYBRIDCOGNITIVEMODELFOR
MACHINEAGENTSINPROJECTANDACTIONTEAMS
I.Introduction
Studiesinthehumanfactorsandcognitivepsychologydisciplinesprovidecriti-calinsightsintothecharacteristicsofhighperformingteams.Theseteamstranscendcomplexdomainuncertaintybyachievingastateofsharedcognition,inwhichknowl-edgeisorganized,represented,anddistributedtoteammembersforrapidexecution[3].Muchoftheworkinmodelingsharedcognitionleverageseithertheconceptofasharedmentalmodel(SMM)[4]oratransactivememorysystem(TMS)[5,6].SMMsarejointunderstandingsoffunctionsorplanssharedamongteammembers.Alternatively,aTMSoffersteammembersaglobalcontextofinformation,mappingwhereknowledgeresidesandthecredibilityoftheknowledgeholder.
Teamscanbecategorizedintofourtypes:(1)advice,(2)production,(3)project,or(4)actionteamsSundstrom,etal.[7].DeChurchandMesmer-Magnus[3]proposedthreecomparableteamcategories:(1)action,(2)decision-making,and(3)projectteams,wherecharacteristicsofSundstrom,etal.’s[7]actionteamisredistributedintotheiractionandprojectteamdefinitions.ThedifferencebetweenSundstrom,etal.’s[7]projectandactionteamsisthelifespanandtaskenvironment.Successfuladviceteamsintegrateknowledgeandproductionteamsintegratebehaviors.Foractionandprojectteams,performancerestsonateamsabilitytointegratebehaviorsandknowledgesimultaneously.
Eachmodelcapturesvaluableinsightsonhowhumansformsharedcognition.SMMsenablehowalignmentinprocessunderstandingandunifiedexecutioninte-
2
gratesbehaviorsandimprovesperformanceinepisodicphysicaltasks(production).TMSsexhibitthatdiversethoughtanddistributedexpertiseintegratesknowledgeandyieldsbetterdecisionsinsequentialknowledgetasks(advice).Neithermodelisasufficientcognitiverepresentationforteamsthatintegrateknowledgeandbehaviorssimultaneously(projectoraction)[3,8].
Projectandactionteamsoperateinenvironmentswithhighlevelsofuncertainty,looselydefinedboundaries,andvaryingmeasuresofsuccess.Instancesoftheseteamtypesaregenerallyfoundwhereinnovation,transformation,orimprovisationisre-quired[7,9,3].Innovativeteamsoftenperformnovelresearchorprototypicaldesign.Transformativeteamsmayleadlargecorporatemergersoractasfirstresponderstopandemicsornaturaldisasters.Improvisationalteamstypicallymanifestassportingclubs,militaryunits,orcrisisnegotiators.Theenvironmentinwhicheachteamoper-atesplacesuniqueconstraintsontheintegrationofknowledgeandbehaviorsandtheabilitytogeneralizebehaviorandknowledgehasnotbeengeneralizedacrosshumansandmachineagents.
Someconstraints,communicationforinstance,applytohumansandmachineagents.Additionalconstraintsonhumanteammembersmanifestasresourcesre-quiredtoattainphysicalskillsorcognitiveproficiencies.Alternatively,constraintsonmachineagentsarerealizedasdesigncomplexitiesindomainrepresentations.Di-rectlycomputingoptimalsolutionsforinterdependentbehaviorsincomplexdomainrepresentationsbecomesintractableforasinglemachineagent,butwellestablishedapproximationmethodsyieldnear-optimalsolutions.Similarlycomplexdomainswithmultiplemachineagentsrequireomnisciencetoleveragethesameapproximationmethods.Omnisciencecanbesimulatedthroughbroadcastcommunicationbetweenallothermachineagents[10].However,thecommunicationoverheadthenbecomesalimitingfactorasagentsmustcommunicatepriortotakingactionsandafterre-
3
ceivingevidenceaboutchangesinthedomain.Ultimately,acognitiverepresentationforinformationorknowledgenecessarytosupportprojectteamsmustconsidertheintegrationtype,theagentconstraints,andthecollaborativeoradversarialnatureofthedomain.
Competitionexistsindynamicdomainsandthenatureofthiscompetitionrangesfromcollaborativetoadversarial.Humansascribealevelofconfidencetoallpartic-ipantsinthesedomainsthatisagnostictothenatureofcompetition[11,3,12,13].Inmorecollaborativedomainsthislevelofconfidencecanindicateameasureofthor-oughness,expertise,orreliability.Alternatively,thismeasuremaymanifestasaleveloftrustworthinessorcommitment.Asimilarmeasureexistsformachineagentsandispredominatelyevidencedinmulti-agent,generalsumgamesasaprobabilisticdis-tributionoverthelikelihoodthatanotherplayerwillactcountertopersonalinterests[14,15,16].Domaincomplexityincreasesforhuman[17]andmachineagents[18]alike,whenactorsmustcontinuallyinferthenatureofcompetitionandthelevelofconfidence.
Unifyingprominenttheoriesofsharedhumancognitionpresentsanopportunityforreducingthecognitivedemandsofdomaincomplexityformachineagentsthatparticipateinprojectandactionteams[8,3].TheintuitionhereisthatbyleveragingthecharacteristicsofSMMsandTMSs,withinaunifiedmodel,actorsmaybettersimultaneouslyintegrateknowledgeandbehaviors.Thecorollaryformachineagentsisthataunifiedmodelreducestheircomputationalcomplexity.ThisresearchpresentsaHybridCognitiveModel(HCM)thatenhancesmachineagentperformanceinprojectandactionteams.
4
1.1ProposedResearch
Theprimaryresearchquestionis:Canahybridcognitivemodelthatleveragescharacteristicsofbothsharedmentalmodelsandtransactivememorysystemssignif-icantlyimprovetheperformanceofprojectandactionteamsthatincludemachineagents?Thisquestionpartitionsintofoursubquestionsforindependenttestingandanalysisusingqualitativeandquantitativemethods.
Question1:Canmachineagentsthatutilizethehybridcognitivemodelcreateandmaintainfullyfactoredbeliefstates?MachineagentscannotaccessaMarko-viansignalduringexecutioninDecentralizedPartiallyObservableMarkovDecisionProcesses(Dec-POMDPs)becausethemodeldynamicsarespecifiedinjointactionsandjointobservations.MachineagentsinDec-POMDPsleveragethesedynamicstocompresstheentiretyofthemodel’sstatehistoryintoonesufficientforpredictingfuturestates.WehypothesizethatmachineagentscanleveragethecontentsofthehybridcognitivemodeltoconstructasyntheticMarkoviansignal.
Question2:Doesthehybridcognitivemodelreducethecomputationalcom-plexityformulti-agentdecisionproblems?ThecomplexityclassforDec-POMDPbasedmulti-agentsystemsisnondeterministicexponentialtime(NEXP),whiletheirsingleagentequivalentsarepolynomialSPACE(PSPACE-Hard).Wehypothesizethatthehybridcognitivemodelallowsagentstooperateunderintentprojectionsandindividualobservations,reducingthepolicyspacebyanexponentialmultiplier.
Question3:Doesthehybridcognitivemodelreducethecommunicationsover-headrequiredformachineagentsinmulti-agentdecisionproblems,whilemaintainingperformanceneartheperformanceofomniscentagents?IntraditionalDec-POMDPs,machineagentsmustknowwhatactionmembersintendtotakeandtheirsubsequentobservationsoverthenewstate,inordertoformaMarkoviansignal.Ingeneral,thismeansthatforeachdecisions,twomessagesareexchangedbetweenallteam
5
members.Wehypothesizethatthehybridcognitivemodelreducescommunicationcostbecausetheseagentsformstructuralandperceptualcognitivemodelsandonlyneedtocommunicate:(1)agentsexperienceasensoranomalyor(2)theprobabilitydistributionoverthestatespacedevolves.Followingamessageexchange,theagentsretrospectivelyconstructanewbeliefdistribution.
Question4:Isthehybridcognitivemodeleffectiveinnon-cooperativeteams?Humanteamshavefullyalignedgoals.Oftenindividualgoals,biases,andulteriormotivesbecomedetrimentaltoateam.Realignmentofteamgoalsrequirenegoti-ationsandreasoningovermutualbenefits.Thereasoningelementofnegotiationsevokesasenseofcausality.Wehypothesizethatthehybridcognitivemodel,whenunifiedwithafunctionalcausalmodel,willfacilitateaninterpretivecognitionmodelinmachineagents.
1.2AssumptionsandLimitations
Thisworkpursuesanovelhybridcognitivemodelformachineagentsthat:(1)isoptimizedforhumanandmachineteams,(2)generalizeswelltodeterministicandstochasticproblemdomains,and(3)constructsanexplainablethreadforeachde-cision.Assumptionsandlimitationsaremadetoconstraintheproblemforstudy.Itisexpectedthatassumptionswillberelaxedoverthecourseoffollow-onresearchefforts.Thefollowingassumptionsapplytotheresearch:
Assumption1:Trialsareconductedwithinsimulatedenvironmentsandgames
Assumption2:Simulateddomainsincludesinglelocation,agridofdiscretizedstates,broadlydiscretizedstates,andasymmetricdiscretizedgames
Assumption3:Cooperativeagentsarefullycooperativeandwithouthiddenagendas
6
Assumption4:Non-cooperativeagentsrangefrombenevolentadversariestodiamet-ricallyopposedadversaries
Assumption5:Wellestablishednavigationmethodsareleveragedtomarginalizeoutextraneousvariables
Measurestoboundtheproblemsunderstudyareacknowledgedinthefollowinglimitations.
Limitation1:Closeddomainrepresentationsareutilized
Limitation2:AgentsemploylimitedalphabetsandlanguagesforcommunicationLimitation3:Gametreescontainaterminalstate
Limitation4:ElementsoftheHCMareinitiallyuniformorspecifiedaprioribasedoncharacteristicsrelevanttoeachdomain
Limitation5:Thecostofcommunicationisfreeandtheexchangeisinstantaneous
1.3ModelImplementation
TheHybridCognitiveModel’s(HCM)specificationplacesemphasisoncapturingthekeyattributesoftheSMMandTMS,definingthestagesoflearning,andminimiz-ingthemaintenanceoverheadoftheinstantiatedmodel.Keyattributesconsideredforthisresearchwerethenature,form,andcontentofcognitionwithinSMMsandTMSs[3].WedrewinspirationfromhumanmemoryprocessesanddefinedtheHCM’sstagesoflearningasencoding,storage,andretrieval[19].AnovelqualityoftheHCMisthatitsubsumestheSMMintheTMS,composingaunifiedrepresentationwiththemaintenanceoverhead(i.e.,thecognitiveload)ofasinglemodel.TheHCMisimplementedinthreephases:formalization,generalization,andspecialization.
7
FormalizingtheHCMbeganwithananalysisofSMMandTMScharacteristics,followedbycategorizationoffeaturesintoatomicelements,andanexaminationofapplicablealgorithms.TheanalysisofSMMandTMSliteratureunderscoredsalientcharacteristicsofeachmodel’snature,form,andcontentofcognition.Natureofcog-nitiondescribesthedifferencesinmanifestationsfortheindividualversestheteam.Thecognitiveformcapturesthestructural,perceptual,andinterpretiveelementsrep-resentedinthecognition[3].TheoverlapwassparseconsideringthenatureandformofSMMsandTMSs,butthecontentsharedmanyfeatures.ElevenatomiccharacteristicsextractedduringthisanalysiswerecoalescedintheHCM’sformaliza-tion.Additionally,examinationfromacomputationallensidentifiedfourfamiliesofalgorithmsthatdemonstratedtheversatilequalitiesrequiredbytheHCM.
ThegeneralizedalgorithmicexpressionthatemergedfromtheHCM’sformaliza-tionincorporatesfourqualities:(1)Markovianinnature,(2)acausalstructure,(3)learnswithinatransactivecontext,and(4)accommodatesvariablelengthproblemhorizons.Markovmodelscompressamodel’sentirestatehistoryintothecurrentstateandhasrigorousmathematicalfoundation[20].BayesianmodelsemploytheMarkovassumptionandcanfacilitatecausalinference[21]necessaryforinterpre-tiveemergence[3].ReinforcementlearningiscompatiblewithBayesianmodelsandpresentsanadvantageousapproachtoreplicatingthenature,form,andcontentofbothSMMsandTMSs.Lastly,MonteCarlomethodsarewellsuitedforthedynamicrangeofstochasticity,uncertainty,andcomplexityofthedomainsunderstudy—es-peciallythosewithvariablelengthorinfinitesearchhorizons.Thequalitiesexhibitedbythesefourfamiliesofalgorithmsallowawiderangeofmulti-agentproblemsthatrequirespecializedinstantiations.
Graphicalmodelsarespecifiedforeachproblemdomainstudiedbasedon:(1)levelofuncertainty,(2)structuralcomplexity,(3)learningrequirements,and(4)
8
branchingfactorofthesearchspace.WeutilizeseveralMarkovianmulti-agentdeci-sionmodelsfromthefamilyofpartiallyobservablestochasticgames[22]toeffectivelyadaptagentstovariousdomainrepresentationswithoutsacrificingtheHCM’sgener-alizability.Multi-agentdecisionproblemshavenotoriouscomplexitiesthatincreaseexponentiallywithvariableelementsofeachdomain.DynamicBayesianNetworks(DBNs)provideagraphicalrepresentationofMarkovianmodelsthatcanbefac-toredagent-wisewhilemaintainingthecausalpropertiesrequiredbytheHCM[23].Additionally,DBNsarecompatiblewithsample-basedapproximationalgorithmstoovercomethecomplexityofdomainsunderstudyaswellasmodel-freereinforcementlearningalgorithms[24].Temporaldifference(TD)learningisamodel-freefam-ilyofalgorithmsthatareconsonantwithDBNsandsample-basedapproximations[25].Furthermore,thesealgorithmsarebiologicallyinspired,transactiveinnature,andtailorlearningupdatestoonlineandofflineenvironmentsalike[25].AspectsofMonteCarlomethodsarepresentinsample-basedapproximationsandTDlearning.However,thepredominantroleofMonteCarlomethodsintheHCM’sspecializedinstantiationsissearchingvastconstructsforoptimalsolutionsandinformingagentdecisions.
1.4EvaluationMeasures
TheHCM’sefficacywasassessedatthreedistinctmilestones.EachmilestonesignifiedafoundationalcapabilityofmachineagentsutilizingtheHCMandbecameaprerequisiteforsubsequentmilestones.Evaluationmeasureswererecordedateachmilestoneindomainswithincreasingcomplexity.ThefirstmilestoneconcernedanHCMmachineagent’sabilitytoindependentlyreasonaboutanuncertainenviron-ment,whileminimizingunnecessarycommunication.Milestonetwofocusedontheabilityofmachineagentteamstosuccessfullymakedecisionsandperformtasksin
9
purelycollaborativedomains.ThelastmilestoneestablishedthatHCMagentsformandmaintainacausalthreadthataidsexplainabilityovereachagent’sdecisionmak-ingprocess.
ThecognitivecharacteristicsthatestablishedtheHCM’sdesignrequirementsare(C1)balancedcognitiveloadsforeachmember,(C2)efficientcommunicationsbe-tweenmembers,and(C3)independentreasoningabouttheenvironmentandallothermembersinacollaborativesetting,and(C4)causalreasoningaboutothermembersinanon-cooperativesetting.Experimentalmeasuresderivedfromeachcharacteris-ticare(M1)computationalcomplexityofthepolicyspace,(M2)inter-agentmessagecount,(M3)hiddenstatetrackingaccuracy,and(M4)intentpredictionaccuracywithimprovementinrepeatedtrials.
Theevaluationmeasuresestablishedformilestone1aretheaveragecumulativerewardsearnedbytwoagentteamsandtheaccuracyofeachagent’sindependentlyformedbeliefsabouttheenvironmentalvariables.Machineagentsutilizedrewardsastheiroptimizationcriterionandin-turnlearnswhichactionyieldsthemaximumrewardandwhichactiontheircounterpartismostlikelytochoose.Theaveragecumulativerewardsfordistinctteamconfigurationarecomparedagainstallotherconfigurations.Ateam’sbeliefsovertheenvironmentalvariablesimpactdecisionmaking.Inaccuratebeliefscanproducesub-optimaldecisions,disruptlearning,anddegradeperceptualcognition.Accuracyofindependentbeliefsaboutavariable’svalueiscomparedagainstitstruevalue.Aswithcumulativerewards,ateam’saveragebe-liefaccuracyiscomparedagainstallotherteamconfigurations.Hypothesis1assertsthatHCMagentsformasyntheticMarkoviansignal(C1).Therefore,thismilestoneisachievedifteam’semployingtheHCMexhibitmeasurementscomparabletoom-niscientagentswithinidenticalconfigurations,whohaveaccesstoatrueMarkoviansignal.
10
Thesecondmilestonerecordsthetimeeachteamtakestomakedecisions,theaveragenumberofmessagesexchangedpertria
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 效果评估与培训
- 冬至知识分享
- 情绪管理心理健康教育
- 少儿美术教育机构
- 弹性髓内钉治疗儿童骨折操作技巧
- 口腔保健培训讲课
- 小学生电梯安全知识讲座
- 2025年金属材精整工职业技能考试题库及答案
- 部编版三年级语文下册第一单元标准检测卷(含答案)
- 心理咨询师的家庭婚姻关系与冲突解决课程
- 高延性混凝土加固施工专项方案
- 复合伤患者的护理课件
- 2023纯电动汽车空调系统的能效技术要求及试验方法
- 30题药品质量检测岗位常见面试问题含HR问题考察点及参考回答
- 消防员应急救援安全应知应会试题及答案
- Unit+5+The+Monarchs+Journey+Language+points+课件-【知识精讲精研】高中英语外研版(2019)必修第一册+
- 《新媒体推广》项目二图文推广-课前自学
- 挂篮检查验收记录表
- 召回产品处理登记表
- PCB的DFM评审报告模板
- 3q认证3q认证模板
评论
0/150
提交评论