机器智能体的混合认知模型 A HYBRID COGNITIVE MODEL FOR MACHINE AGENTS IN PROJECT AND ACTION TEAMS_第1页
机器智能体的混合认知模型 A HYBRID COGNITIVE MODEL FOR MACHINE AGENTS IN PROJECT AND ACTION TEAMS_第2页
机器智能体的混合认知模型 A HYBRID COGNITIVE MODEL FOR MACHINE AGENTS IN PROJECT AND ACTION TEAMS_第3页
机器智能体的混合认知模型 A HYBRID COGNITIVE MODEL FOR MACHINE AGENTS IN PROJECT AND ACTION TEAMS_第4页
机器智能体的混合认知模型 A HYBRID COGNITIVE MODEL FOR MACHINE AGENTS IN PROJECT AND ACTION TEAMS_第5页
已阅读5页,还剩217页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AHYBRIDCOGNITIVEMODELFOR

MACHINEAGENTSINPROJECTAND

ACTIONTEAMS

DISSERTATION

JoshuaA.Lapso,Major,USAFAFIT-ENG-DS-23-D-031

DEPARTMENTOFTHEAIRFORCEAIRUNIVERSITY

AIRFORCEINSTITUTEOFTECHNOLOGY

Wright-PattersonAirForceBase,Ohio

DISTRIBUTIONSTATEMENTA

APPROVEDFORPUBLICRELEASE;DISTRIBUTIONUNLIMITED.

TheviewsexpressedinthisdocumentarethoseoftheauthoranddonotreflecttheofficialpolicyorpositionoftheUnitedStatesAirForce,theUnitedStatesDepartmentofDefenseortheUnitedStatesGovernment.ThismaterialisdeclaredaworkoftheU.S.GovernmentandisnotsubjecttocopyrightprotectionintheUnitedStates.

AFIT-ENG-DS-23-D-031

AHYBRIDCOGNITIVEMODELFOR

MACHINEAGENTSINPROJECTANDACTIONTEAMS

DISSERTATION

PresentedtotheFaculty

GraduateSchoolofEngineeringandManagement

AirForceInstituteofTechnology

AirUniversity

AirEducationandTrainingCommand

inPartialFulfillmentoftheRequirementsforthe

DegreeofDoctorofPhilosophyinComputerEngineering

JoshuaA.Lapso,B.S.C.E.,M.S.C.O.Major,USAF

21December2023

DISTRIBUTIONSTATEMENTA

APPROVEDFORPUBLICRELEASE;DISTRIBUTIONUNLIMITED.

AFIT-ENG-DS-23-D-031

AHYBRIDCOGNITIVEMODELFOR

MACHINEAGENTSINPROJECTANDACTIONTEAMS

DISSERTATION

JoshuaA.Lapso,B.S.C.E.,M.S.C.O.

Major,USAF

CommitteeMembership:

Dr.GilbertL.PetersonChairman

Dr.MichaelE.MillerMember

Dr.DouglasD.HodsonMember

Dr.LarryW.BurggrafDean’sRepresentative

iv

AFIT-ENG-DS-23-D-031

Abstract

Theinteractionsbetweenhumansandmachineagentsareubiquitousandperme-atetheconceptualboundariesoforganizedgroupsandactivities.Highperforminghumanteamstranscendcomplexdomainuncertaintybyachievinganemergentstateofsharedcognition,inwhichknowledgeisorganized,represented,anddistributedtoteammembersforrapidexecution.However,thisrequiresthatindividualsemitperceivablequalitiesuponwhichothermemberscanmakeinferencesaboutintent.Inpursuitoffuturehumanandmachineteamstudies,thisresearchpresentsahy-bridcognitivemodelformachineagentsinfullycooperativeandsemi-cooperativeactionandprojectteams.Thehybridcognitivemodelunifiesthecharacteristicsofthesharedmentalmodelandtransactivememorysystem.Theresultantmodelfacilitatesanytimeselectionoverthetwocognitiverepresentationswiththecomputa-tionalcomplexityofasinglemodel.Evaluationofthehybridcognitivemodeloccursinmulti-agentdomainswithincreasingcomplexityandlevelsofcooperation.Agentper-formanceisassessedaccordingtofourcognitivecharacteristicsthatcaptureaspectsofthenaturesandformsofcognitionfoundinprojectandactionteams.Thestudiesutilizeamixedmethodsapproachintheanalysisoffourestablishedcharacteristicsandmeasures.Theresultsdemonstratethatagentsusingthecognitivemodelformalignedrepresentationsthatencodestructural,perceptual,andinterpretivecognitiveforms.Additionally,theresultssuggestthatagentsemployingthehybridcognitivemodelcanswitchbetweencompositionalandcompilationalnaturesofemergenceasnecessarytointegratebehaviorsorknowledge.

v

Acknowledgements

Tomyresearchadvisorandmentor

Thankyouforinvestingyourtimeinme.Thankyouforhelpingmegrowasascientist.Thankyouforpatientlyguidingmethroughthisacademicendeavorandsupportingmeamidthepersonalchallenges.

Tomycommitteemembers

Thankyouforalltheinvaluableinsightsandfeedback.YoumadeanincredibleimpactonmeandIlookforwardtofuturecollaborations.

Tothedepartmentleadership

Thankyouforencouragingmethroughoutthisjourneyandkeepingmeoptimistic.I’mproudtobeamemberofthisfacultyteam.

Tomywife

Mahalagakongasawa,thankyouformakingthisdreampossible.Thankyouforsacrificingtimeandenergytokeepmegoing.Thankyouforpickinguptheslackandbeingthebestmemberofourteam.

Tomykids

Thankyouforinspiringme.Thankyouforbelievinginme.Thankyouforremindingmetotakebreaksandshareinyourjoy.Papalovesyou!

JoshuaA.Lapso

vi

TableofContents

Page

Abstract iv

Acknowledgements v

ListofFigures viii

ListofTables x

I.Introduction 1

1.1ProposedResearch 4

1.2AssumptionsandLimitations 5

1.3ModelImplementation 6

1.4EvaluationMeasures 8

1.5SummaryofRemainingSections 11

II.RelatedWork 12

2.1Teams 12

2.2SharedCognition 14

2.3CausalityandBayesianModels 21

2.4MachineAgentModelsandGameTheory 22

2.5ReinforcementLearning 26

2.6Summary 27

III.TheHybridCognitiveModelforMachineAgents:

Formalization,Generalization,andProblemDomains 28

3.1CognitiveTeamModels 28

Teams 29

CognitiveModelsforAdviceTeams 30

CognitiveModelsforProductionTeams 33

CognitiveModelsforProjectandActionTeams 35

3.2Formalization 36

3.3GeneralizedGraphicalModelsandAlgorithmicForms 38

3.4ProblemDomains 44

Triage 44

IncidentResponse 45

Diplomacy 47

vii

Page

IV.StudyingHCMPerformanceinCollaborativeProjectTeams 49

4.1Introduction 50

4.2SpecializedInstantiationforCollaborativeProject

Teams 52

4.3PreliminaryEvaluation:FullyFactoredBeliefs 57

4.4Experimentation 59

4.5Results 62

Characteristic1(C1) 62

Characteristic2(C2) 63

Characteristic3(C3) 64

4.6Conclusion 66

V.CognitiveTeamModelsinPressDiplomacy 67

5.1Introduction 67

5.2AHybridCognitiveModelforPressDiplomacy 70

ModelFormulation 71

GraphicalModel 73

ModelElements 73

AlgorithmicApproach 78

5.3DiplomacyVignettes 84

PostureGameStage 84

EarlyGameStage 88

MiddleGameStage 91

5.4Results 95

ParameterTuning 95

Characteristic4(C4) 97

5.5Summary 99

VI.ConclusionandFutureWork 101

6.1SummaryofContributions 101

RetrospectiononFormalizingtheHCM 102

6.2FutureWork 105

Bibliography 107

viii

ListofFigures

FigurePage

1Acomparisonofthenatureofemergence 15

2Acomparisonofsharedmentalalignment 18

3Ademonstrationoftransactiveencoding 20

4AgeneralizedDBM 22

5Partiallyobservablestochasticgames 23

6Individualencoding 31

7Transactiveinterpretation 32

8Transactiveencoding 33

9Individualandsharedmentalmodels 34

10AvisualizationoftheHCMforthreeteammembers 36

11Acomparisonofactiveelementsinthehybridcognitive

model 37

12TheHCMasaDBNfortwoagents 39

13AflowchartforatwoHCMagents 40

14TheHCMasaDBNforfullyobservabledomains 42

15AtwoagentvisualizationoftheTriageproblemdomain 44

16AnabstractdiscretizationoftheIncidentResponse

domain 46

17TheDiplomacyGameBoard[1] 47

18TheHCMasaDBNformultipleagents 55

19Averagecumulativerewards 58

20Beliefstatetrackingaccuracy 59

21AnabstractdiscretizationoftheIncidentResponse

domain 60

ix

FigurePage

22Cumulativemessageexchanges 64

23Internalstatetrackingaccuracy 65

24TheHCMasaDBNforPressDiplomacy 74

25Theinternalcognitivestatetransitions 74

26AnorientationalviewofaDiplomacyPower 77

27Anorientationalviewofeachpowernodeconnectedby

weightededges 77

28Austria’scognitiverepresentationatthebeginningof

play 85

29Austria’scognitiverepresentationafterthefirst

Diplomaticphase 87

30Germany’spriorcognitiverepresentationintheearly

gamestage 89

31Germany’sposteriorcognitiverepresentationinthe

earlygamestage 90

32Turkey’spriorcognitiverepresentationinthemiddle

gamestage 93

33Turkey’sposteriorcognitiverepresentationinthe

middlegamestage 94

34RMSerrorforparticlecountinsampledvariables 96

35RMSerrorforDutchtracewithingamestages 97

36PointswonbyeachpowerplayedbyanHCMagent

over840games 99

37Cumulativepointswonbyeachpowerplayedbyan

HCMagentatdiscreteintervalsthroughoutthe120

repeatedgames 100

x

ListofTables

TablePage

1Acomparisonofabstractteamtypes 13

2CharacteristicsofSMMsandTMSs[2] 17

3Domaincomplexityforvariousagentconfigurations 63

4HCMWeightingElements 76

5Errormatrixbetweenprojectedandactualordersets

duringtheposturestage 87

6Theerrormatrixbetweenprojectedandactualorder

setsduringtheearlystage 91

7Theerrormatrixbetweenprojectedandactualorder

setsduringthemiddlestage 95

1

AHYBRIDCOGNITIVEMODELFOR

MACHINEAGENTSINPROJECTANDACTIONTEAMS

I.Introduction

Studiesinthehumanfactorsandcognitivepsychologydisciplinesprovidecriti-calinsightsintothecharacteristicsofhighperformingteams.Theseteamstranscendcomplexdomainuncertaintybyachievingastateofsharedcognition,inwhichknowl-edgeisorganized,represented,anddistributedtoteammembersforrapidexecution[3].Muchoftheworkinmodelingsharedcognitionleverageseithertheconceptofasharedmentalmodel(SMM)[4]oratransactivememorysystem(TMS)[5,6].SMMsarejointunderstandingsoffunctionsorplanssharedamongteammembers.Alternatively,aTMSoffersteammembersaglobalcontextofinformation,mappingwhereknowledgeresidesandthecredibilityoftheknowledgeholder.

Teamscanbecategorizedintofourtypes:(1)advice,(2)production,(3)project,or(4)actionteamsSundstrom,etal.[7].DeChurchandMesmer-Magnus[3]proposedthreecomparableteamcategories:(1)action,(2)decision-making,and(3)projectteams,wherecharacteristicsofSundstrom,etal.’s[7]actionteamisredistributedintotheiractionandprojectteamdefinitions.ThedifferencebetweenSundstrom,etal.’s[7]projectandactionteamsisthelifespanandtaskenvironment.Successfuladviceteamsintegrateknowledgeandproductionteamsintegratebehaviors.Foractionandprojectteams,performancerestsonateamsabilitytointegratebehaviorsandknowledgesimultaneously.

Eachmodelcapturesvaluableinsightsonhowhumansformsharedcognition.SMMsenablehowalignmentinprocessunderstandingandunifiedexecutioninte-

2

gratesbehaviorsandimprovesperformanceinepisodicphysicaltasks(production).TMSsexhibitthatdiversethoughtanddistributedexpertiseintegratesknowledgeandyieldsbetterdecisionsinsequentialknowledgetasks(advice).Neithermodelisasufficientcognitiverepresentationforteamsthatintegrateknowledgeandbehaviorssimultaneously(projectoraction)[3,8].

Projectandactionteamsoperateinenvironmentswithhighlevelsofuncertainty,looselydefinedboundaries,andvaryingmeasuresofsuccess.Instancesoftheseteamtypesaregenerallyfoundwhereinnovation,transformation,orimprovisationisre-quired[7,9,3].Innovativeteamsoftenperformnovelresearchorprototypicaldesign.Transformativeteamsmayleadlargecorporatemergersoractasfirstresponderstopandemicsornaturaldisasters.Improvisationalteamstypicallymanifestassportingclubs,militaryunits,orcrisisnegotiators.Theenvironmentinwhicheachteamoper-atesplacesuniqueconstraintsontheintegrationofknowledgeandbehaviorsandtheabilitytogeneralizebehaviorandknowledgehasnotbeengeneralizedacrosshumansandmachineagents.

Someconstraints,communicationforinstance,applytohumansandmachineagents.Additionalconstraintsonhumanteammembersmanifestasresourcesre-quiredtoattainphysicalskillsorcognitiveproficiencies.Alternatively,constraintsonmachineagentsarerealizedasdesigncomplexitiesindomainrepresentations.Di-rectlycomputingoptimalsolutionsforinterdependentbehaviorsincomplexdomainrepresentationsbecomesintractableforasinglemachineagent,butwellestablishedapproximationmethodsyieldnear-optimalsolutions.Similarlycomplexdomainswithmultiplemachineagentsrequireomnisciencetoleveragethesameapproximationmethods.Omnisciencecanbesimulatedthroughbroadcastcommunicationbetweenallothermachineagents[10].However,thecommunicationoverheadthenbecomesalimitingfactorasagentsmustcommunicatepriortotakingactionsandafterre-

3

ceivingevidenceaboutchangesinthedomain.Ultimately,acognitiverepresentationforinformationorknowledgenecessarytosupportprojectteamsmustconsidertheintegrationtype,theagentconstraints,andthecollaborativeoradversarialnatureofthedomain.

Competitionexistsindynamicdomainsandthenatureofthiscompetitionrangesfromcollaborativetoadversarial.Humansascribealevelofconfidencetoallpartic-ipantsinthesedomainsthatisagnostictothenatureofcompetition[11,3,12,13].Inmorecollaborativedomainsthislevelofconfidencecanindicateameasureofthor-oughness,expertise,orreliability.Alternatively,thismeasuremaymanifestasaleveloftrustworthinessorcommitment.Asimilarmeasureexistsformachineagentsandispredominatelyevidencedinmulti-agent,generalsumgamesasaprobabilisticdis-tributionoverthelikelihoodthatanotherplayerwillactcountertopersonalinterests[14,15,16].Domaincomplexityincreasesforhuman[17]andmachineagents[18]alike,whenactorsmustcontinuallyinferthenatureofcompetitionandthelevelofconfidence.

Unifyingprominenttheoriesofsharedhumancognitionpresentsanopportunityforreducingthecognitivedemandsofdomaincomplexityformachineagentsthatparticipateinprojectandactionteams[8,3].TheintuitionhereisthatbyleveragingthecharacteristicsofSMMsandTMSs,withinaunifiedmodel,actorsmaybettersimultaneouslyintegrateknowledgeandbehaviors.Thecorollaryformachineagentsisthataunifiedmodelreducestheircomputationalcomplexity.ThisresearchpresentsaHybridCognitiveModel(HCM)thatenhancesmachineagentperformanceinprojectandactionteams.

4

1.1ProposedResearch

Theprimaryresearchquestionis:Canahybridcognitivemodelthatleveragescharacteristicsofbothsharedmentalmodelsandtransactivememorysystemssignif-icantlyimprovetheperformanceofprojectandactionteamsthatincludemachineagents?Thisquestionpartitionsintofoursubquestionsforindependenttestingandanalysisusingqualitativeandquantitativemethods.

Question1:Canmachineagentsthatutilizethehybridcognitivemodelcreateandmaintainfullyfactoredbeliefstates?MachineagentscannotaccessaMarko-viansignalduringexecutioninDecentralizedPartiallyObservableMarkovDecisionProcesses(Dec-POMDPs)becausethemodeldynamicsarespecifiedinjointactionsandjointobservations.MachineagentsinDec-POMDPsleveragethesedynamicstocompresstheentiretyofthemodel’sstatehistoryintoonesufficientforpredictingfuturestates.WehypothesizethatmachineagentscanleveragethecontentsofthehybridcognitivemodeltoconstructasyntheticMarkoviansignal.

Question2:Doesthehybridcognitivemodelreducethecomputationalcom-plexityformulti-agentdecisionproblems?ThecomplexityclassforDec-POMDPbasedmulti-agentsystemsisnondeterministicexponentialtime(NEXP),whiletheirsingleagentequivalentsarepolynomialSPACE(PSPACE-Hard).Wehypothesizethatthehybridcognitivemodelallowsagentstooperateunderintentprojectionsandindividualobservations,reducingthepolicyspacebyanexponentialmultiplier.

Question3:Doesthehybridcognitivemodelreducethecommunicationsover-headrequiredformachineagentsinmulti-agentdecisionproblems,whilemaintainingperformanceneartheperformanceofomniscentagents?IntraditionalDec-POMDPs,machineagentsmustknowwhatactionmembersintendtotakeandtheirsubsequentobservationsoverthenewstate,inordertoformaMarkoviansignal.Ingeneral,thismeansthatforeachdecisions,twomessagesareexchangedbetweenallteam

5

members.Wehypothesizethatthehybridcognitivemodelreducescommunicationcostbecausetheseagentsformstructuralandperceptualcognitivemodelsandonlyneedtocommunicate:(1)agentsexperienceasensoranomalyor(2)theprobabilitydistributionoverthestatespacedevolves.Followingamessageexchange,theagentsretrospectivelyconstructanewbeliefdistribution.

Question4:Isthehybridcognitivemodeleffectiveinnon-cooperativeteams?Humanteamshavefullyalignedgoals.Oftenindividualgoals,biases,andulteriormotivesbecomedetrimentaltoateam.Realignmentofteamgoalsrequirenegoti-ationsandreasoningovermutualbenefits.Thereasoningelementofnegotiationsevokesasenseofcausality.Wehypothesizethatthehybridcognitivemodel,whenunifiedwithafunctionalcausalmodel,willfacilitateaninterpretivecognitionmodelinmachineagents.

1.2AssumptionsandLimitations

Thisworkpursuesanovelhybridcognitivemodelformachineagentsthat:(1)isoptimizedforhumanandmachineteams,(2)generalizeswelltodeterministicandstochasticproblemdomains,and(3)constructsanexplainablethreadforeachde-cision.Assumptionsandlimitationsaremadetoconstraintheproblemforstudy.Itisexpectedthatassumptionswillberelaxedoverthecourseoffollow-onresearchefforts.Thefollowingassumptionsapplytotheresearch:

Assumption1:Trialsareconductedwithinsimulatedenvironmentsandgames

Assumption2:Simulateddomainsincludesinglelocation,agridofdiscretizedstates,broadlydiscretizedstates,andasymmetricdiscretizedgames

Assumption3:Cooperativeagentsarefullycooperativeandwithouthiddenagendas

6

Assumption4:Non-cooperativeagentsrangefrombenevolentadversariestodiamet-ricallyopposedadversaries

Assumption5:Wellestablishednavigationmethodsareleveragedtomarginalizeoutextraneousvariables

Measurestoboundtheproblemsunderstudyareacknowledgedinthefollowinglimitations.

Limitation1:Closeddomainrepresentationsareutilized

Limitation2:AgentsemploylimitedalphabetsandlanguagesforcommunicationLimitation3:Gametreescontainaterminalstate

Limitation4:ElementsoftheHCMareinitiallyuniformorspecifiedaprioribasedoncharacteristicsrelevanttoeachdomain

Limitation5:Thecostofcommunicationisfreeandtheexchangeisinstantaneous

1.3ModelImplementation

TheHybridCognitiveModel’s(HCM)specificationplacesemphasisoncapturingthekeyattributesoftheSMMandTMS,definingthestagesoflearning,andminimiz-ingthemaintenanceoverheadoftheinstantiatedmodel.Keyattributesconsideredforthisresearchwerethenature,form,andcontentofcognitionwithinSMMsandTMSs[3].WedrewinspirationfromhumanmemoryprocessesanddefinedtheHCM’sstagesoflearningasencoding,storage,andretrieval[19].AnovelqualityoftheHCMisthatitsubsumestheSMMintheTMS,composingaunifiedrepresentationwiththemaintenanceoverhead(i.e.,thecognitiveload)ofasinglemodel.TheHCMisimplementedinthreephases:formalization,generalization,andspecialization.

7

FormalizingtheHCMbeganwithananalysisofSMMandTMScharacteristics,followedbycategorizationoffeaturesintoatomicelements,andanexaminationofapplicablealgorithms.TheanalysisofSMMandTMSliteratureunderscoredsalientcharacteristicsofeachmodel’snature,form,andcontentofcognition.Natureofcog-nitiondescribesthedifferencesinmanifestationsfortheindividualversestheteam.Thecognitiveformcapturesthestructural,perceptual,andinterpretiveelementsrep-resentedinthecognition[3].TheoverlapwassparseconsideringthenatureandformofSMMsandTMSs,butthecontentsharedmanyfeatures.ElevenatomiccharacteristicsextractedduringthisanalysiswerecoalescedintheHCM’sformaliza-tion.Additionally,examinationfromacomputationallensidentifiedfourfamiliesofalgorithmsthatdemonstratedtheversatilequalitiesrequiredbytheHCM.

ThegeneralizedalgorithmicexpressionthatemergedfromtheHCM’sformaliza-tionincorporatesfourqualities:(1)Markovianinnature,(2)acausalstructure,(3)learnswithinatransactivecontext,and(4)accommodatesvariablelengthproblemhorizons.Markovmodelscompressamodel’sentirestatehistoryintothecurrentstateandhasrigorousmathematicalfoundation[20].BayesianmodelsemploytheMarkovassumptionandcanfacilitatecausalinference[21]necessaryforinterpre-tiveemergence[3].ReinforcementlearningiscompatiblewithBayesianmodelsandpresentsanadvantageousapproachtoreplicatingthenature,form,andcontentofbothSMMsandTMSs.Lastly,MonteCarlomethodsarewellsuitedforthedynamicrangeofstochasticity,uncertainty,andcomplexityofthedomainsunderstudy—es-peciallythosewithvariablelengthorinfinitesearchhorizons.Thequalitiesexhibitedbythesefourfamiliesofalgorithmsallowawiderangeofmulti-agentproblemsthatrequirespecializedinstantiations.

Graphicalmodelsarespecifiedforeachproblemdomainstudiedbasedon:(1)levelofuncertainty,(2)structuralcomplexity,(3)learningrequirements,and(4)

8

branchingfactorofthesearchspace.WeutilizeseveralMarkovianmulti-agentdeci-sionmodelsfromthefamilyofpartiallyobservablestochasticgames[22]toeffectivelyadaptagentstovariousdomainrepresentationswithoutsacrificingtheHCM’sgener-alizability.Multi-agentdecisionproblemshavenotoriouscomplexitiesthatincreaseexponentiallywithvariableelementsofeachdomain.DynamicBayesianNetworks(DBNs)provideagraphicalrepresentationofMarkovianmodelsthatcanbefac-toredagent-wisewhilemaintainingthecausalpropertiesrequiredbytheHCM[23].Additionally,DBNsarecompatiblewithsample-basedapproximationalgorithmstoovercomethecomplexityofdomainsunderstudyaswellasmodel-freereinforcementlearningalgorithms[24].Temporaldifference(TD)learningisamodel-freefam-ilyofalgorithmsthatareconsonantwithDBNsandsample-basedapproximations[25].Furthermore,thesealgorithmsarebiologicallyinspired,transactiveinnature,andtailorlearningupdatestoonlineandofflineenvironmentsalike[25].AspectsofMonteCarlomethodsarepresentinsample-basedapproximationsandTDlearning.However,thepredominantroleofMonteCarlomethodsintheHCM’sspecializedinstantiationsissearchingvastconstructsforoptimalsolutionsandinformingagentdecisions.

1.4EvaluationMeasures

TheHCM’sefficacywasassessedatthreedistinctmilestones.EachmilestonesignifiedafoundationalcapabilityofmachineagentsutilizingtheHCMandbecameaprerequisiteforsubsequentmilestones.Evaluationmeasureswererecordedateachmilestoneindomainswithincreasingcomplexity.ThefirstmilestoneconcernedanHCMmachineagent’sabilitytoindependentlyreasonaboutanuncertainenviron-ment,whileminimizingunnecessarycommunication.Milestonetwofocusedontheabilityofmachineagentteamstosuccessfullymakedecisionsandperformtasksin

9

purelycollaborativedomains.ThelastmilestoneestablishedthatHCMagentsformandmaintainacausalthreadthataidsexplainabilityovereachagent’sdecisionmak-ingprocess.

ThecognitivecharacteristicsthatestablishedtheHCM’sdesignrequirementsare(C1)balancedcognitiveloadsforeachmember,(C2)efficientcommunicationsbe-tweenmembers,and(C3)independentreasoningabouttheenvironmentandallothermembersinacollaborativesetting,and(C4)causalreasoningaboutothermembersinanon-cooperativesetting.Experimentalmeasuresderivedfromeachcharacteris-ticare(M1)computationalcomplexityofthepolicyspace,(M2)inter-agentmessagecount,(M3)hiddenstatetrackingaccuracy,and(M4)intentpredictionaccuracywithimprovementinrepeatedtrials.

Theevaluationmeasuresestablishedformilestone1aretheaveragecumulativerewardsearnedbytwoagentteamsandtheaccuracyofeachagent’sindependentlyformedbeliefsabouttheenvironmentalvariables.Machineagentsutilizedrewardsastheiroptimizationcriterionandin-turnlearnswhichactionyieldsthemaximumrewardandwhichactiontheircounterpartismostlikelytochoose.Theaveragecumulativerewardsfordistinctteamconfigurationarecomparedagainstallotherconfigurations.Ateam’sbeliefsovertheenvironmentalvariablesimpactdecisionmaking.Inaccuratebeliefscanproducesub-optimaldecisions,disruptlearning,anddegradeperceptualcognition.Accuracyofindependentbeliefsaboutavariable’svalueiscomparedagainstitstruevalue.Aswithcumulativerewards,ateam’saveragebe-liefaccuracyiscomparedagainstallotherteamconfigurations.Hypothesis1assertsthatHCMagentsformasyntheticMarkoviansignal(C1).Therefore,thismilestoneisachievedifteam’semployingtheHCMexhibitmeasurementscomparabletoom-niscientagentswithinidenticalconfigurations,whohaveaccesstoatrueMarkoviansignal.

10

Thesecondmilestonerecordsthetimeeachteamtakestomakedecisions,theaveragenumberofmessagesexchangedpertria

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论