风力发电机组雷电防护系统技术规范_第1页
风力发电机组雷电防护系统技术规范_第2页
风力发电机组雷电防护系统技术规范_第3页
风力发电机组雷电防护系统技术规范_第4页
风力发电机组雷电防护系统技术规范_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1风力发电机组雷电防护系统技术规范

篇一:风电机组的防雷和防雷标准

风电机组的防雷和防雷标准

1引言

在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主要是450kW级以下的风电机组,雷害问题并不突出。随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。在风电机组的20年寿命期内,难免会遭遇到雷电的直击。中国可再生能源学会风能专业委员会于2009年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防雷已经引起专家的高度重视。

国际电工委员会(IEC)第88工作委员会(IECTC88)在编制风电机组系列标准IEC61400时,编制了一个技术报告(TR),作为IEC61400系列标准的第24部分于2002年6月出版,其初衷是想为这个相对年经的工业提供防雷知识。该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002年以前更加复杂和突出。因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。将IEC61400由技术报告(TR)升级为技术标准(TS)便提上了议事日程。

2风电机组的雷害

IEC61400-242002中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工作原理以及所处场地等因素使其容易遭受雷害。人们已经了解建筑物高度对雷击过程的影响。高度超过60m的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。风电机组塔架是高于60m的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。另外,从雷电机理可知,与上行雷相关的起始连续电流转移的电荷量可以高达300C,也就是说,上行雷造成的对建筑物的损坏比例随着高度增加而增加,当塔架高度超过100m时上行雷击的概率升高。而风电机组一般设置在风力强大的高于周围地区的制高点,并且远离其他高大物体,例如海岸、丘陵、山脊,这些地区正是雷电多发区,因此更能吸引雷电。

据德国、丹麦、瑞典等欧洲国家统计,雷电引起故障的频率是,每年每百台机组达3.9次到8次。直接雷击可以使叶片遭到损毁;雷电电磁脉冲(雷电感应过电压)等间接雷击可以使发电机、变压器、变流器等电气设备和控制、通信、SCADA等电子系统遭受灾难性损坏;也有极个别的轮毂、齿轮箱、液压系统、偏航系统和传动系统及机械制动器等雷击损坏的报道。其中控制系统、传感器、通信、SCADA等弱电部件遭受雷害的概率较大,这是因为这些弱电器件的耐过电压和过电流的能力较弱,雷电电磁脉冲会使其损坏,但由于维修方便,直接和间接经济损失与由于叶片损坏所造成的损失相比不算很大。

叶片在遭到直击雷时损坏都比较严重,且遭到损毁的叶片不易修复。离岸或在边远地区设置的机组,物资运输极其困难,维修人员的开销很大,同时风电场停止运行的收入损失也是巨大的。因此,叶片的雷害最引人关注。

另外一个问题是现代大型风电机组的叶片用不能传导雷电流的复合材料制成,例如玻璃纤维增强塑料或木材层压板。在叶片未加防护时,一旦被雷电击中就会造成损坏。因此,对这类叶片作防雷要求是必要的。用玻璃纤维增强塑料制成的机舱外壳,也应当采取防直接雷击措施。

1引言

在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主要是450kW级以下的风电机组,雷害问题并不突出。随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。在风电机组的20年寿命期内,难免会遭遇到雷电的直击。中国可再生能源学会风能专业委员会于2009年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防雷已经引起专家的高度重视。国际电工委员会(IEC)第88工作委员会(IECTC88)在编制风电机组系列标准IEC61400时,编制了一个技术报告(TR),作为IEC61400系列标准的第24部分于2002年6月出版,其初衷是想为这个相对年经的工业提供防雷知识。该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002年以前更加复杂和突出。因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。将IEC61400由技术报告(TR)升级为技术标准(TS)便提上了议事日程。

2风电机组的雷害

IEC61400-242002中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工作原理以及所处场地等因素使其容易遭受雷害。人们已经了解建筑物高度对雷击过程的影响。高度超过60m的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。风电机组塔架是高于60m的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。另外,从

雷电机理可知,与上行雷相关的起始连续电流转移的电荷量可以高达300C,也就是说,上行雷造成的对建筑物的损坏比例随着高度增加而增加,当塔架高度超过100m时上行雷击的概率升高。而风电机组一般设置在风力强大的高于周围地区的制高点,并且远离其他高大物体,例如海岸、丘陵、山脊,这些地区正是雷电多发区,因此更能吸引雷电。据德国、丹麦、瑞典等欧洲国家统计,雷电引起故障的频率是,每年每百台机组达3.9次到8次。直接雷击可以使叶片遭到损毁;雷电电磁脉冲(雷电感应过电压)等间接雷击可以使发电机、变压器、变流器等电气设备和控制、通信、SCADA等电子系统遭受灾难性损坏;也有极个别的轮毂、齿轮箱、液压系统、偏航系统和传动系统及机械制动器等雷击损坏的报道。其中控制系统、传感器、通信、SCADA等弱电部件遭受雷害的概率较大,这是因为这些弱电器件的耐过电压和过电流的能力较弱,雷电电磁脉冲会使其损坏,但由于维修方便,直接和间接经济损失与由于叶片损坏所造成的损失相比不算很大。

叶片在遭到直击雷时损坏都比较严重,且遭到损毁的叶片不易修复。离岸或在边远地区设置的机组,物资运输极其困难,维修人员的开销很大,同时风电场停止运行的收入损失也是巨大的。因此,叶片的雷害最引人关注。

另外一个问题是现代大型风电机组的叶片用不能传导雷电流的复合材料制成,例如玻璃纤维增强塑料或木材层压板。在叶片未加防护时,一旦被雷电击中就会造成损坏。因此,对这类叶片作防雷要求是必要的。用玻璃纤维增强塑料制成的机舱外壳,也应当采取防直接雷击措施。

风电机组是不断旋转运动的机械,于是又出现了一个特殊问题——雷击的风险出现在旋转叶片上多处,并且不止一个叶片遭到雷击。原因是一次雷击包含有几个不连续的脉冲,即雷击的连续性,一次雷击的持续时间达到1s,这一时间足以使多个叶片暴露在雷电中(例如一个3叶片的风电机组的旋转速度为20r/min,那么每个叶片的运动速度就为120°/s)。

雷击叶片时,雷电流通过整个机组构筑物入地,包括桨距轴承、轮毂和主轴轴承、齿轮、发动机轴承、底座、偏航轴承和塔架。雷电流流经齿轮和轴承可使其损坏,特别是在滚轮和滚道之间以及齿轮与轮齿间有润滑层时,损坏更严重。

风电机组的防雷问题,可以理解为有成千上万高度超过100m的高大建筑物,位于荒郊野地,很容易遭受雷击。这些构筑物内有复杂的电气和控制设备,外部用复合材料制成,还有长达60m的旋转的叶片。过去各国的经验已经证明,位于雷电频发地区的风电机组,在它服务寿命期内,都会遭到数次雷击。因此,风电机组的防雷必须引起人们的注意。

3IEC61400技术标准概要

3.1IEC61400技术标准编制背景2006年,国际电工委员会(IEC)第81委员会(TC81)完成了系列标准IEC62305:2006ProtectionagainstLightning,我国于2008年将其等同采用为国家标准,即GB/T21714—2008《雷电防护》。这时,IECTC88第24项目组提出以IEC62305:2006为主要参考文件,将IEC61400:2002由技术报告升级为技术标准。第24项目组希望有更多的防雷专家与风电机组的制造商合作,将防雷专家咨询变为防雷专家参与完成防雷工作。虽然,风电机组的防雷还有一些未解决的难题(如叶片的有效防雷),但过去几十年的研究和经验证明,只要采取的措施得当,风电机组是可以防范雷电损坏的。

新的IEC61400-24注重将现存的IEC62305系列防雷标准、IEC61000系列EMC标准、电机系统标准、电气系统标准兼顾,并考虑将叶片和最新的航空工业的研究成果和发布的标准SAE/EUROCAE等应用到风电机组上,以达到保护电器和控制系统以及整个机组结构的目的。新的标准强调用试验证明防护系统设计的有效性,提出对叶片进行高电压大电流试验。高电压大电流试验最初用来进行飞机结构合格检验,现在许多叶片制造厂家已经用来检验叶片和风电机组雷电导流系统中的分离部件的导流和耐流能力。

3.2新IEC61400-24处理的主要题目

3.2.1风电机组雷电环境定义

新IEC61400-24认为,IEC62305-1定义的雷电流参数基本上也可用于风电机组的雷电防护系统设计以及防雷部件的选择和测试。

在IEC62305-1中,根据构筑物预期的雷击电流大小,将雷电防护水平分为表1所示的几类。

我国各地雷电环境不同,预期的雷电流大小也不一样,应当根据我国不同地域使用和规定防护水平。要考虑我国大多数地区雷电直接击中叶片时,电流达到200kA的概率极小。

风电机组中的易损器件是接闪器(安装在叶尖)、接闪器系统、滑动接触器、火花间隙和电涌保护器(SPD)等,雷击转移的总电荷是确定材料易损(熔化)以及维修需求的关键参数。增加易损器件的耐受雷电能力,重新设计这些部件的可靠性,使风电机组在其寿命期内可以抵御磨损和破裂。

图1设置在山峰上的风电机组高度H的确定示意图

3.2.2风电机组雷害风险评估

IEC61400-24:2002按照IEC/TR261662Ed.1.0来评估风电机组的雷害。新标准遵循IEC62305-2RiskManagement(风险管理)的雷电环境和风险评估程序评估风电机组的雷害,使其符合风电机组的情况。新标准建议计算等效雷击截收面积时,风电机组的高度应为轮毂高度与风轮半径之和的高度,同时还要考虑地形的变化(图1)。

图2供电和通信电缆连接的将风电机组和其它建筑物连接时的雷电截收面积

在计算等效雷击截收面积时,考虑高度为Ha的风电机组等效雷击截收面积以及与机组连接的高度为Hb的建筑物等效雷击截收面积之和,还有与之相连的地下电缆长度Lc相关的面积(图2)。

图3雷电防护区LPZ的应用(图中,1为LPZ1区,2为LPZ2区)

篇二:风力发电机防雷系统

新疆大学课程大作业

题目:风力发电机防雷系统

班级:电气09-2班

姓名:艾米杜拉·阿布杜热依木

学号:20092101427

专业:电气工程及其自动化

指导教师:王海云

时间:2013年5月28日

一、概述

风能是当前技术最成熟、最具备规模开发条件的可再生洁净能源。风能发电为人与自然和谐发展提供了基础。由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。

由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,风机的高度和安装位置决定了它是雷击的首选通道,而且风机内部集中了大量敏感的电气、电子设备,一次雷击带来的损坏将是非常大的。因此,必须为风机内的电气、电子设备安装完整的防雷保护系统。通过安装防雷保护装置,设备得到了保护,维护和维修费用降低,并且可以提高设备正常工作的时间。从效率方面考虑,应该从风电机组的设计阶段就考虑其防雷保护的问题,这样就可以避免日后的昂贵的维修费用和改造工程。只有可靠工作的设备才能让投资尽快收回。也只有如此,才能让更多的潜在投资者接受这一系统。

二、风电机组综合防雷保护系统

1、雷电对风电机组的危害

雷电对风电机组的危害风力发电机通常位于开阔的区域,而且很高,所以整个风机是暴露在直接雷击的威胁之下,被雷电直接击中的概率是与该物体的高度的平方值成正比。兆瓦级风力发电机的叶片高度达到150m以上,因此风机的叶片部分特别容易被雷电击中。风机内部集成了大量的电气、电子设备,可以说,我们平常用到的几乎每一种电子元件和电气设备,都可以在一台风电机组中找到其应用,例如开关柜、马达、驱动装置、变频器、传感器、执行机构,以及相应的总线系统等。这些设备都集中在一个很小的区域内。毫无疑问,电涌可以给风电机组带来相当严重的损坏。

风力发电机遭雷击损坏后,由于故障损害的分析和后续的维修,会有一段时间的停工期。对于风电场经营者来说,设备长时间停机是负担不起的。风机高昂的首次投资费用必须在有限的时间内收回,因此必须采取措施保证设备的长期稳定运行。从广泛使用的雷暴活动水平这一指标中,我们可以知道某一地区一年中云对地闪击的次数。

在欧洲,海岸地区和较低海拔的山区每年每平方公里发生的云‐地闪击一般按照1次到3次来估算。平均每年的预计落雷数可以按照下列公式来计算:

n=2.4×10‐5×Ng×H2.05Ng每年每平方公里的云‐地闪击数,H为物体的高度假设每平方公里年平均云‐地闪击数是2,一个75m高的物体,其雷击概率大约是每三年一次。兆瓦级风机(H≥150m)的落雷数可以达到每12个月一次。在设计防雷装置时,还要考虑的是:当暴露在雷电直击范围内的物体高度超过60m时,除了云‐地闪击之外,地‐云的闪击也会出现。地‐云闪击也称作向上闪击,它从地面先导,伴随更大的雷击能量。地‐云闪击的影响对于风机叶片的防雷设计和第一级防雷器的设计非常重要。

根据长期观察,雷击造成的损坏中除了机械损坏之外,风机的电子控制部分也常常损坏,主要有:变频器、过程控制计算机、转速表传感器、测风装置。

2、防雷保护措施

防雷保护区概念是规划风力发电机综合防雷保护的基础。它是一种对结构空间的设计方法,以便在构筑物内创建一个稳定的电磁兼容性环境(图1),构筑物内不同电气设备的抗电磁干扰能力的大小决定了对这一空间电磁环境的要求。

图1风力发电机雷电保护区概念(LPZ)

作为一种保护措施,防雷保护区概念当然就包括了应在防雷保护区的边界处,将电磁干扰(传导性干扰和辐射性干扰)降低到可接受的范围内,因此,被保护的构筑物的不同部分被细分为不同的防雷保护区。防雷保护区的具体划分结果与风电机组的结构有关,并且也要考虑这一结构建筑形式和材料。通过设置屏蔽装置和安装电涌保护器,雷电在防雷保护区0A区的影响在进入1区时被大大缩减,风电机组内的电气和电子设备就可以正常工作,不受干扰。

按照防雷保护分区的概念,一个综合防雷系统包括:

1)外部防雷保护系统:接闪器、引下线、接地系统。

2)内部防雷保护系统:防雷击等电位连接、电涌保护、屏蔽措施

下面作详细介绍。

3、外部防雷保护系统

外部防雷保护系统由接闪器、引下线和接地系统组成,它的作用是防止雷击对风电机组结构的损坏以及火灾危险。

1)接闪器

雷击风力发电机的落雷点一般是在风机的桨叶上,因此接闪器应预先布置在桨叶的预计雷击点处以接闪雷击电流。为了以可控的方式传导雷电流入地,桨叶上的接闪器通过金属连接带连接到中间部位,金属连接带可采用30×3.5mm镀锌扁钢。对于机舱内的滚珠轴承,为了避免雷电在通过轴承时引起的焊接效应,应将其两端通过碳刷或者放电间隙桥接起来。对于位于机舱顶部的设施(例如风速计)的防雷保护,采用避雷针的方式安装在机舱顶部,保护该设备不受直接雷击。

2)引下线

如果是金属塔,可以直接将塔架作为引下线来使用;如果是混凝土塔身,那么采用内置引下线(镀锌圆钢φ8~10mm,或者镀锌扁钢30×3.5mm)。

3)接地系统

风力发电机的接地由塔基的基础接地极提供,塔基的基础接地网应与周围的操作室的基础接地极相连构成一个网状接地体(如图2)。这样就形成了一个等电位连接区,当雷击发生时就可以消除不同点的电位差。

图2风机和操作室的接地系统

4、内部防雷保护系统

内部防雷保护系统是由所有的在该区域内缩减雷电电磁效应的设施组成。主要包括防雷击等电位连接、屏蔽措施和电涌保护。

1)防雷击等电位连接

防雷击等电位连接是内部防雷保护系统的重要组成部分。等电位连接可以有效抑制雷电引起的电位差。在防雷击等电位连接系统内,所有导电的部件都被相互连接,以减小电位差。在设计等电位连接时,应按照标准考虑其最小连接横截面积。一个完整的等电位连接网络也包括金属管线和电源、信号线路的等电位连接,这些线路应通过雷电流保护器与主接地汇流排相连。

2)屏蔽措施

屏蔽装置可以减少电磁干扰。由于风力发电机结构的特殊性,如果能在设计阶段就考虑到屏蔽措施,那么屏蔽装置就可以以较低成本实现。机舱应该制成一个封闭的金属壳体,相关的电气和电子器件都装在开关柜,开关柜和控制柜的柜体应具备良好的屏蔽效果。在塔基和机舱的不同设备之间的线缆应带有外部金属屏蔽层。对于干扰的抑制,只有当线缆屏蔽的两端都连接到等电位连接带时,屏蔽层对电磁干扰的抑制才是有效的。

3)电涌保护

除了使用屏蔽措施来抑制辐射干扰源以外,对于防雷保护区边界处的传导性干扰也需要有相应的保护措施,这样才能让电气和电子设备可靠的工作。在防雷

保护区0A→1的边界处必须使用防雷器,它可以导走大量的分雷电流而不会损坏设备。这种防雷器也称之为雷电流保护器(I级防雷器),它们可以限制接地的金属设施和电源、信号线路之间由雷电引起的高电位差,将其限制在安全的范围之内。雷电流保护器的最重要的特性是:按照10/350μs脉冲波形测试,可以承受雷击电流。对风电机组来说,电源线路0A→1边界处的防雷保护是在400/690V电源侧完成的。

在防雷保护区以及后续防雷区,仅有能量较小的脉冲电流存在,这类脉冲电流是由外部的感应过电压产生,或者是从系统内部产生的电涌。对于这一类脉冲电流的保护设备叫作电涌保护器(II级防雷器)。用8/20μs脉冲电流波形进行测试,从能量协调的角度来说,电涌保护器需要安装在雷电流保护器的下游。当在数据处理系统安装电涌保护器时,与电源系统上安装的电涌保护器不同的是电涌保护器与测控系统的兼容性以及测控系统本身的工作特性需要特别注意。这些保护器与数据线串联连接,而且必须将干扰水平限制在被保护设备的耐受能力以内。

三、风电机组内部电气、电子设备的电涌保护

根据风机内设备的不同以及电涌保护器安装位置的不同,将风机内设备的电涌保护分成7个部分,以下具体介绍电涌保护器在各个不同设备中的配置。分别是:

1)发电机的保护

2)机舱开关柜的保护

3)变桨系统的保护

4)塔基变频柜的保护

5)塔基控制柜的保护

6)变压器端的保护

接地系统设计要求:

建造一个围绕风力发电机、与塔架相连接的环形接地系统。塔架的加强钢筋应该与风力发电机的接地系统进行焊接。

图3风电机组内部电气、电子设备的电涌保护

所有接地电极、地下金属物件以及接地系统互相连接。在一个风电接地系统应该与场中,所有风力发电机的接地系统应互相连接。接地系统一定要紧凑,接

篇三:高原型风力发电机组技术规范

CGC

北京鉴衡认证中心认证技术规范

CGC/GF024:2012CNCA/CTS0011-2013

高原型风力发电机组技术规范

TechnicalSpecificationforhighattitudewind

turbines

2013-09-11发布2013-10-01实施

北京鉴衡认证中心

发布

目次

前言II1范围12规范性引用文件13术语和定义24通用要求25技术条件36检验77标志、标签和使用说明书88运输、贮存和安装9附录A(资料性附录)10

前言

为规范高原地区的风力发电机组认证,特制定本规范。本规范按照GB/T1.1-2009给出的规则起草。本规范由北京鉴衡认证中心有限公司提出并归口。本规范由北京鉴衡认证中心有限公司负责解释。

本规范主要起草单位:北京鉴衡认证中心有限公司、南车株洲电力机车研究所有限公司、东方汽轮机有限公司、新疆金风科技股份有限公司、天津瑞能电气有限公司、北车风电有限公司

本规范主要起草人:黄志文、王靛、王百方、莫尔兵、于良峰、杨洪源、张新强、巫发明、王丹丹、孟庆顺、曹贝贞、周新亮

高原型风力发电机组技术规范

1范围

本规范适用于安装在海拔高度2000m~4000m高原地区的水平轴风力发电机组(以下简称机组),4000m以上地区可参照执行。

本规范可作为机组的设计、制造、检测和认证的依据。2规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。。

GB/T191-2008包装储运图示标志GB755-2008旋转电机定额和性能GB/T1032三相异步电机试验方法

GB/T1094.11电力变压器第11部分:干式变压器GB/T1766-2008色漆和清漆涂层老化的评级方法

GB/T1865-2009色漆和清漆人工气候老化和人工辐射暴露(虑过的氙弧辐射)

GB/T2423.27电工电子产品环境试验第2部分试验方法试验Z-AMD:低温-低气压-湿热连续综合试验。

GB/T9969-2008工业产品使用说明书总则GB/T11804电工电子产品环境条件术语

GB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论