下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省宁德市福安第一中学2020年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.长方体的三个面的面积分别是,则长方体的体积是(
).A. B. C.
D.6参考答案:C2.某工厂生产的零件外直径(单位:cm)服从正态分布,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.45cm和9.35cm,则可认为()A.上午生产情况异常,下午生产情况正常 B.上午生产情况正常,下午生产情况异常C.上、下午生产情况均正常 D.上、下午生产情况均异常参考答案:B【分析】由题意,某工厂生产的零件外直径服从正态分布,可得生产的零件外直径在内生产是正常的,即可作出判定,得到答案。【详解】由题意,某工厂生产的零件外直径服从正态分布,根据原则可得,即,即生产的零件外直径在内生产是正常的,又由从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.45cm和9.35cm,所以上午生产情况正常,下午生产情况异常,故选B。【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的原则,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题。
3.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.则x+y的值为()A.7 B.8 C.9 D.10参考答案:B【考点】茎叶图;众数、中位数、平均数.【分析】利用平均数求出x的值,中位数求出y的值,解答即可.【解答】解:由茎叶图可知甲班学生的总分为70×2+80×3+90×2+(8+9+5+x+0+6+2)=590+x,又甲班学生的平均分是85,总分又等于85×7=595.所以x=5乙班学生成绩的中位数是80+y=83,得y=3.∴x+y=8.故选B.4.已知是虚数单位,,,且,则(▲)
A.
B. C. D.参考答案:D略5.若,则“”是“”的(
).A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:B或,所以“”是“”的必要而不充分条件,故选.6.下列命题错误的是
(A)命题“若lnx=0,则x=1”的逆否命题为“若x≠1,则lnx≠0”
(B)“x>2”是“<”的充分不必要条件
(C)命题p:∈R,使得sinx>1,则p:∈R,均有sinx≤1
(D)若p∧q为假命题,则p,q均为假命题参考答案:D略7.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为
(
)A.2
B.3
C.4
D.5参考答案:B略8.已知中,分别是角的对边,,则=()A.
B.
C.或
D.
参考答案:D9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.参考答案:B试题分析:如图为等腰直角三角形旋转而成的旋转体,,故选B.考点:圆锥的体积公式.
10.以下有关命题的说法错误的是(
) A.命题“若则x=1”的逆否命题为“若” B.“”是“”的充分不必要条件 C.若为假命题,则p、q均为假命题D.对于命题参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知的值为________.参考答案:12.函数的值域为
参考答案:13.(5分)由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个(用数字作答).参考答案:由题意,末尾数字为5或3,其余位置任意排列,所以奇数共有2×=48个故答案为:48由题意,末尾数字为5或3,其余位置任意排列,从而可得结论14.若函数在区间()上既不是单调递增函数,也不是单调递减函数,则实数a的取值范围是________
参考答案:15.已知函数,则
.参考答案:2
16.已知函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且f(2)=3,则f(-1)=
.参考答案:略17.复数满足(是虚数单位),则复数对应的点位于复平面的第
象限.参考答案:四三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)从某校高一年级1000名学生中随机抽取100名测量身高,测量后发现被抽取的学生身高全部介于155厘米到195厘米之间,将测量结果分为八组:第一组[155,160),第二组[160,165),…,第八组[190,195),得到频率分布直方图如图所示.(Ⅰ)计算第三组的样本数;并估计该校高一年级1000名学生中身高在170厘米以下的人数;(Ⅱ)估计被随机抽取的这100名学生身高的中位数、平均数.参考答案:【考点】频率分布直方图.【专题】计算题;图表型;数形结合;数形结合法;概率与统计.【分析】(Ⅰ)由频率分布直方图分析可得各数据段的频率,再由频率与频数的关系,可得频数.(Ⅱ)先求前四组的频率,进而可求中位数,计算可得各组频数,即可求解平均数.【解答】(本题满分为12分)解:(Ⅰ)由第三组的频率为:[1﹣5×(0.008+0.008+0.012+0.016+0.016+0.06)]÷2=0.2,则其样本数为:0.2×100=20,…3分由5×(0.008+0.016)+0.2=0.32,则该校高一年级1000名学生中身高在170厘米以下的人数约为:0.32×1000=320(人)…6分(Ⅱ)前四组的频率为:5×(0.008+0.016)+0.4=0.52,0.52﹣0.5=0.02,则中位数在第四组中,由=0.1,可得:175﹣0.1×5=174.5,所以中位数为174.5cm,…9分计算可得各组频数分别为:4,8,20,20,30,8,6,4,平均数约为:(157.5×4+162.5×8+167.5×20+172.5×20+177.5×30+182.5×8+187.5×6+192.5×4)÷100=174.1(cm)…12分【点评】本题考查了频率分布直方图的应用,关键是正确分析频率分布直方图的数据信息,准确计算,属于基础题.19.(本小题满分14分)某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考察得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是,且各题答对与否互不影响.设选手甲、选手乙答对的题数分别为ξ,η.(1)写出ξ的概率分布列,并求出E(ξ),E(η);(2)求D(ξ),D(η).请你根据得到的数据,建议该单位派哪个选手参加竞赛?参考答案:(1)ξ的概率分布列为所以E(ξ)=1×+2×+3×=2.
由题意,η~B(3,),E(η)=3×=2.
或者,P(η=0)=C()3=;P(η=1)=C()1()2=;P(η=2)=C()2()=;P(η=3)=C()3=.所以,E(η)=0×+1×+2×+3×=2.(2)D(ξ)=(1-2)2×+(2-2)2×+(3-2)2×=,由η~B(3,),D(η)=3××=.可见,E(ξ)=E(η),D(ξ)<D(η),因此,建议该单位派甲参加竞赛.20.(本小题满分12分)已知长方形ABCD,,BC=1,以AB的中点O为原点建立如图所示的平面直角坐标系xoy.(Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程;(Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由。参考答案:(Ⅰ)由题意可得点A,B,C的坐标分别为.设椭圆的标准方程是ks5u则2分.∴椭圆的标准方程是.
……4分(Ⅱ)由题意直线的斜率存在,可设直线的方程为.…5分设M,N两点的坐标分别为.联立方程:消去整理得,有
………………7分若以MN为直径的圆恰好过原点,则,所以,…8分所以,,即所以,ks5u即,
……9分得.
……10分所以直线的方程为,或.………………11分所在存在过P(0,2)的直线:使得以弦MN为直径的圆恰好过原点。…1221.(本题满分10分)命题关于的不等式,对一切恒成立,:函数是增函数。若或为真,且为假,求实数的取值范围参考答案:p为真:△=4-16<0
-2<<2,
q为真:3-2>1<1
...............2分因为p或q为真,p且q为假
p,q一真一假
...............4分当p真q假时,
1≤
.........
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓储物流设备交易居间合同
- 保健服务居间合同
- 商场改造废弃物清运合同
- 2025至2030年中国不锈钢玻璃夹数据监测研究报告
- 2025至2030年中国三边封立式包装机数据监测研究报告
- 2025至2030年中国PET保鲜瓶数据监测研究报告
- 2025至2031年中国出料壶行业投资前景及策略咨询研究报告
- 音乐版权居间服务协议合同
- 小学音乐课程设计与实施计划
- 商业生产中危险源辨识与防控策略分析报告
- 茶室经营方案
- 军队文职岗位述职报告
- 小学数学六年级解方程练习300题及答案
- 电抗器噪声控制与减振技术
- 中医健康宣教手册
- 2024年江苏扬州市高邮市国有企业招聘笔试参考题库附带答案详解
- 消费医疗行业报告
- 品学课堂新范式
- GB/T 1196-2023重熔用铝锭
- 运输行业员工岗前安全培训
- 公路工程安全风险辨识与防控手册
评论
0/150
提交评论