福建省宁德市福鼎白琳镇中学2021-2022学年高一数学文上学期期末试卷含解析_第1页
福建省宁德市福鼎白琳镇中学2021-2022学年高一数学文上学期期末试卷含解析_第2页
福建省宁德市福鼎白琳镇中学2021-2022学年高一数学文上学期期末试卷含解析_第3页
福建省宁德市福鼎白琳镇中学2021-2022学年高一数学文上学期期末试卷含解析_第4页
福建省宁德市福鼎白琳镇中学2021-2022学年高一数学文上学期期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

/福建省宁德市福鼎白琳镇中学2021-2022学年高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合,集合,则() A. B. C. D.参考答案:B略2.函数的图象是

)参考答案:A3.已知函数y=f(x)在R上为偶函数且在[0,+∞)上单调递增.若f(t)>f(2﹣t),则实数t的取值范围是()A.(﹣∞,1) B.(1,+∞) C. D.(2,+∞)参考答案:B【考点】奇偶性与单调性的综合.【专题】转化思想;定义法;函数的性质及应用.【分析】根据函数奇偶性和单调性的关系进行转化即可.【解答】解:∵函数y=f(x)在R上为偶函数且在[0,+∞)上单调递增.若f(t)>f(2﹣t),∴不等式等价为f(|t|)>f(|2﹣t|),则等价为|t|>|2﹣t|,即t2>|2﹣t|2=4﹣4t+t2,即4t>4,则t>1,故选:B【点评】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质进行转化是解决本题的关键.4.=(

)A.

B.-

C.

D.-参考答案:C5.的值为(

)A. B. C. D.参考答案:C【分析】根据二倍角的余弦公式整理为特殊角的三角函数值求解.【详解】本题正确选项:【点睛】本题考查二倍角余弦公式求解三角函数值,属于基础题.6.某三棱锥的三视图如图所示,该三棱锥的体积为(

) A.2 B.3 C.4 D.6参考答案:A考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图知几何体为三棱锥,且三棱锥的高为2,底面三角形是直角边长分别为2,3的直角三角形,把数据代入棱锥的体积公式计算.解答: 解:由三视图知几何体为三棱锥,且三棱锥的高为2,底面三角形是直角边长分别为2,3的直角三角形,∴几何体的体积V=××2×3×2=2.故选A.点评:本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量.7.下列函数在区间上是增函数的是(

)A.

B.

C.

D.参考答案:B8.下列各组中,函数f(x)和g(x)的图象相同的是

)A.f(x)=x,g(x)=()2

B.f(x)=1,g(x)=x0C.f(x)=|x|,g(x)=

D.f(x)=|x|,g(x)=参考答案:C9.已知△ABC的面积为1,设是△内的一点(不在边界上),定义,其中分别表示△,△,△的面积,若,则的最小值为(

A.8

B.9

C.16

D.18参考答案:

D10.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x| D.y=﹣x2+1参考答案:D【考点】3K:函数奇偶性的判断;3E:函数单调性的判断与证明.【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选D.二、填空题:本大题共7小题,每小题4分,共28分11.已知,,则___________。参考答案:略12.已知直线与圆:交于A,B两点,C为圆心,若,则a的值为___.参考答案:-1【分析】先由圆的方程得到圆心坐标与半径,根据圆心角,得到圆心到直线的距离,再由点到直线距离公式求出圆心到直线的距离,列出等式,即可求出结果.【详解】由题意可得,圆的标准方程为,圆心,半径,因为,所以圆心到直线的距离为,又由点到直线的距离公式可得,圆心到直线的距离为,所以,解得.故答案为【点睛】本题主要考查直线与圆相交求参数的问题,熟记点到直线距离公式,以及几何法求弦长即可,属于常考题型.13.(5分)已知奇函数f(x)在[0,1]上是增函数,在[1,+∞)上是减函数,且f(3)=0,则满足(x﹣1)f(x)<0的x的取值范围是

.参考答案:(﹣∞,﹣3)∪(0,1)∪(3,+∞)考点: 函数单调性的性质.专题: 计算题;函数的性质及应用;不等式的解法及应用.分析: 运用奇函数的图象和性质可得f(x)在[﹣1,0]上为增函数,在(﹣∞,﹣1]上为减函数.且f(0)=0,f(﹣3)=f(3)=0,讨论x>1或﹣1<x<1或x<﹣1,得到不等式组,通过单调性解出它们,再求并集即可.解答: 解:由于奇函数的图象关于原点对称,则由奇函数f(x)在[0,1]上是增函数,在[1,+∞)上是减函数,可得f(x)在[﹣1,0]上为增函数,在(﹣∞,﹣1]上为减函数.且f(0)=0,f(﹣3)=f(3)=0,不等式(x﹣1)f(x)<0,即为或或,即有或或,解得,x>3或0<x<1或x<﹣3,故答案为:(﹣∞,﹣3)∪(0,1)∪(3,+∞).点评: 本题考查函数的奇偶性和单调性的运用:解不等式,考查分类讨论的思想方法,考查运算能力,属于中档题和易错题.14.函数的值域是________参考答案:【分析】利用二倍角公式结合三角函数性质直接求解即可【详解】故函数的值域为故答案为【点睛】本题考查三角函数的性质,二倍角公式,熟记性质是关键,是基础题15.已知D是不等式组所确定的平面区域,则圆在区域D内的弧长为

.参考答案:略16.已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},若A∪B=A,则m的范围是

.参考答案:(﹣∞,3]略17.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是

.参考答案:(﹣1,3)【考点】函数奇偶性的性质;函数单调性的性质.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(8分)已知,求的值。

参考答案:略19.在平面四边形ABCD中,AD=7,BD=8,,.(1)求;(2)若,求CD.参考答案:(1)在中,∵,∴,∴.由正弦定理得,∴.∵,∴,∴.(2)∵,∴,又∵,∴,∴,在中∵,∴.20.已知集合A={x|﹣4<x≤7},B={x|﹣5≤x<6},N={x|a﹣4<x<a+8},全集U=R.(Ⅰ)求A∩B,A∪B(Ⅱ)若(CUB)∪N=R,求实数a的取值范围.参考答案:【考点】交、并、补集的混合运算;并集及其运算;交集及其运算.【专题】计算题;定义法;集合.【分析】(Ⅰ)由A与B,求出A∩B,A∪B即可;(Ⅱ)求出B的补集,根据B补集与N的并集为R,求出a的范围即可.【解答】解:(Ⅰ)∵A={x|﹣4<x≤7},B={x|﹣5≤x<6},∴A∩B={x|﹣4<x<6},A∪B={x|﹣5≤x≤7};(Ⅱ)∵B={x|﹣5≤x<6},∴?UB={x|x<﹣5或x≥6},∵(?UB)∪N=R,N={x|a﹣4<x<a+8},∴,解得:﹣2≤a<﹣1,则实数a的范围为{a|﹣2≤a<﹣1}.【点评】此题考查了交、并、补集的混合运算,并集及其运算,以及交集及其运算,熟练掌握各自的定义是解本题的关键.21.已知函数f(x)=x+﹣4,g(x)=kx+3.(1)当a=k=1时,求函数y=f(x)+g(x)的单调递增与单调递减区间;(2)当a∈[3,4]时,函数f(x)在区间[1,m]上的最大值为f(m),试求实数m的取值范围;(3)当a∈[1,2]时,若不等式|f(x1)|﹣|f(x2)|<g(x1)﹣g(x2)对任意x1,x2∈[2,4](x1<x2)恒成立,求实数k的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)将a=k=1代入函数,求出函数y=f(x)+g(x)的导数,从而求出函数的单调区间即可;(2)解不等式f(m)≥f(1)即可;(3)不等式等价于F(x)=|f(x)|﹣g(x)在[2,4]上递增,显然F(x)为分段函数,结合单调性对每一段函数分析讨论即可.【解答】解:(1)a=k=1时,y=f(x)+g(x)=2x+﹣1,y′=2﹣=,令y′>0,解得:x>1或x<﹣1,令y′<0,解得:﹣1<x<1且x≠0,故函数在(﹣∞,﹣1)递增,在(﹣1,0),(0,1)递减,在(1,+∞)递增;(2)∵a∈[3,4],∴y=f(x)在(1,)上递减,在(,+∞)上递增,又∵f(x)在区间[1,m]上的最大值为f(m),∴f(m)≥f(1),解得(m﹣1)(m﹣a)≥0,∴m≥amax,即m≥4;(3)∵|f(x1)|﹣|f(x2)|<g(x1)﹣g(x2),∴|f(x1)|﹣g(x1)<|f(x2)|﹣g(x2)恒成立,令F(x)=|f(x)|﹣g(x),则F(x)在[2,4]上递增.对于F(x)=,(i)当x∈[2,2+]时,F(x)=(﹣1﹣k)x﹣+1,①当k=﹣1时,F(x)=﹣+1在[2,2+]上递增,所以k=﹣1符合;②当k<﹣1时,F(x)=(﹣1﹣k)x﹣+1在[2,2+]上递增,所以k<﹣1符合;③当k>﹣1时,只需≥2+,即≥(+)max=2+,所以﹣1<k≤6﹣4,从而k≤6﹣4;(ii)当x∈(2+,4]时,F(x)=(1﹣k)x+﹣7,①当k=1时,F(x)=﹣7在(2+,4]上递减,所以k=1不符合;②当k>1时,F(x)=(1﹣k)x+﹣7在(2+,4]上递减,所以k>1不符合;③当k<1时,只需≤2+,即≤(+)min=1+,所以k<2﹣2,综上可知:k≤6﹣4.22.(12分)若函数f(x)和g(x)满足:①在区间[a,b]上均有定义;②函数y=f(x)﹣g(x)在区间[a,b]上至少有一个零点,则称f(x)和g(x)在[a,b]上具有关系G.(1)若f(x)=lgx,g(x)=3﹣x,试判断f(x)和g(x)在[1,4]上是否具有关系G,并说明理由;(2)若f(x)=2|x﹣2|+1和g(x)=mx2在[1,4]上具有关系G,求实数m的取值范围.参考答案:考点: 函数零点的判定定理.专题: 计算题;函数的性质及应用.分析: (1)先判断它们具有关系G,再令h(x)=f(x)﹣g(x)=lgx+x﹣3,利用函数零点的判定定理判断.(2)令h(x)=f(x)﹣g(x)=2|x﹣2|+1﹣mx2,当m≤0时,易知h(x)在[1,4]上不存在零点,当m>0时,h(x)=;再分段讨论函数的零点即可.解答: (1)它们具有关系G:令h(x)=f(x)﹣g(x)=lgx+x﹣3,∵h(1)=﹣2<0,h(4)=lg4+1>0;故h(1)?h(4)<0,又h(x)在[1,4]上连续,故函数y=f(x)﹣g(x)在区间[a,b]上至少有一个零点,故f(x)和g(x)在[1,4]上具有关系G.(2)令h(x)=f(x)﹣g(x)=2|x﹣2|+1﹣mx2,当m≤0时,易知h(x)在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论