湖南科技大学《计算机视觉》2023-2024学年第一学期期末试卷_第1页
湖南科技大学《计算机视觉》2023-2024学年第一学期期末试卷_第2页
湖南科技大学《计算机视觉》2023-2024学年第一学期期末试卷_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页湖南科技大学

《计算机视觉》2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在图像分类任务中,深度学习模型取得了显著的成果。假设要对一组包含不同动物的图像进行分类,以下关于图像分类模型的描述,正确的是:()A.模型的层数越多,分类准确率一定越高B.数据增强技术,如旋转、裁剪等,对模型的性能提升没有帮助C.结合多种特征提取方法和分类器,可以提高图像分类的准确性和鲁棒性D.图像分类模型不需要考虑图像的空间信息,只关注像素值的统计特征2、计算机视觉在安防监控领域有广泛应用。假设要通过监控摄像头实时检测人群中的异常行为,以下哪种方法可能需要大量的标注数据进行训练?()A.基于规则的方法B.基于深度学习的方法C.基于背景减除的方法D.基于帧差法的方法3、在计算机视觉的图像配准任务中,需要将不同时间或视角拍摄的图像进行对齐。假设要将两张拍摄角度不同的卫星图像进行精确配准,图像中存在地形变化和云层遮挡。以下哪种图像配准方法在这种困难情况下能够取得较好的效果?()A.基于特征的配准B.基于灰度的配准C.基于变换模型的配准D.基于深度学习的配准4、计算机视觉中的人脸检测和识别是热门研究方向。假设要在一个大规模的人脸数据库中进行快速准确的人脸识别,以下哪种特征提取方法可能更具优势?()A.基于几何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度学习的方法D.基于主成分分析(PCA)的方法5、计算机视觉中的图像增强技术可以改善图像质量。假设要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,正确的是:()A.简单地增加图像的亮度就能有效改善低光照图像的质量B.直方图均衡化方法总是能够在不引入噪声的情况下增强图像对比度C.基于深度学习的图像增强方法能够自适应地学习到适合的增强策略D.图像增强不会改变图像的原始信息和内容6、在计算机视觉领域中,当需要对监控视频中的行人进行实时检测和跟踪,以实现智能安防系统的功能时,以下哪种方法在处理复杂场景和多目标跟踪方面可能表现更为出色?()A.基于传统图像处理的方法B.基于深度学习的目标检测算法C.基于特征匹配的跟踪算法D.基于光流法的跟踪算法7、在计算机视觉的场景理解任务中,需要对整个图像场景进行分析和解释。假设我们有一张城市街道的图像,要理解其中的道路、建筑物、车辆和行人之间的关系。以下哪种方法能够提供更全面和深入的场景理解?()A.基于对象检测和分类的方法B.基于语义分割和图模型的方法C.基于深度学习的场景解析网络D.基于特征匹配和聚类的方法8、在计算机视觉的图像检索任务中,假设要从一个大型图像数据库中快速找到与给定查询图像相似的图像。这些图像可能在内容、风格和主题上存在差异。为了提高检索的效率和准确性,以下哪种方法通常被采用?()A.基于全局特征的图像表示和相似性度量B.只对图像的标签进行文本匹配,忽略图像内容C.随机选择数据库中的图像作为检索结果D.不进行任何预处理,直接在原始图像上进行检索9、计算机视觉在无人驾驶中的应用至关重要。假设要通过车载摄像头识别道路上的交通标志和标线,以下关于应对复杂环境变化的策略,哪一项是不正确的?()A.利用多模态数据融合,如结合摄像头和激光雷达的信息B.定期更新模型,适应新出现的交通标志和标线C.只依靠单一摄像头的图像信息,不考虑其他传感器D.对不同天气和光照条件下的数据进行增强训练10、计算机视觉中的动作识别用于分析视频中的人体动作。假设要识别一段舞蹈视频中的动作类别。以下关于动作识别方法的描述,哪一项是不准确的?()A.可以基于时空特征提取的方法,捕捉动作在时间和空间上的变化B.深度学习中的循环神经网络(RNN)和长短时记忆网络(LSTM)适用于动作序列的分析C.动作识别只需要关注人体的关节位置,不需要考虑人体的整体形态D.多模态数据融合,如结合音频和视频信息,可以提高动作识别的准确率11、在计算机视觉的图像检索任务中,假设要从海量的图像库中快速找到与给定图像相似的图像。以下关于图像特征表示的选择,哪一项是需要重点考虑的?()A.选择具有高维度的特征向量,包含丰富的图像信息B.采用低维度但具有区分性的特征表示,提高检索效率C.忽略特征的维度和区分性,随机选择一种特征表示D.只使用图像的颜色特征,忽略形状和纹理等特征12、在计算机视觉的视频分析中,假设要对一段监控视频中的异常行为进行检测。以下关于特征提取的方法,哪一项是不太适合的?()A.提取每一帧图像的颜色、纹理等低级特征B.利用光流信息来捕捉物体的运动特征C.仅分析视频的音频信息,忽略图像内容D.结合时空特征,同时考虑空间和时间维度的信息13、当利用计算机视觉进行图像分类任务,例如区分不同种类的动物图片,为了提高模型的泛化能力和防止过拟合,以下哪种技术可能是有效的?()A.数据增强B.正则化C.模型融合D.以上都是14、计算机视觉中的表情识别用于分析人脸的表情状态。假设要在一个在线教育平台中检测学生的学习状态。以下关于表情识别的描述,哪一项是不正确的?()A.可以通过提取面部肌肉的运动特征来判断表情B.深度学习中的卷积神经网络能够自动学习表情的特征表示C.表情识别能够准确区分细微的表情变化,如困惑和专注D.表情识别不受面部遮挡和光照变化的影响,始终能够准确判断15、在计算机视觉中,特征提取是非常关键的一步。假设我们要对一组风景图像进行特征提取,以便后续的图像检索和分类任务。以下哪种特征提取方法能够捕捉到图像的全局和局部特征,并且对图像的旋转、缩放等变换具有较好的不变性?()A.尺度不变特征变换(SIFT)B.方向梯度直方图(HOG)C.局部二值模式(LBP)D.卷积神经网络自动学习的特征二、简答题(本大题共4个小题,共20分)1、(本题5分)简述计算机视觉中的图像分割技术。2、(本题5分)计算机视觉中如何进行跳蚤市场中的商品评估?3、(本题5分)解释计算机视觉中多模态数据融合的概念。4、(本题5分)描述计算机视觉在金融领域的应用。三、应用题(本大题共5个小题,共25分)1、(本题5分)开发一个可以识别不同种类企鹅的计算机视觉应用。2、(本题5分)运用图像分类技术,对不同种类的宝石进行分类。3、(本题5分)基于计算机视觉的垃圾分类系统,自动识别垃圾的种类并进行分类。4、(本题5分)基于计算机视觉的智能售货机系统,通过商品图像识别实现自动售货。5、(本题5分)基于计算机视觉,开发一个可以检测道路上车辆类型的系统。四、分析题(本大题共4个小题,共40分)1、(本题10分)探讨某化妆品品牌的线上推广页面设计,研究其如何通过动态效果、用户互动、产品展示等手段吸引消费者在线购买。2、(本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论