热点07 相似三角形_第1页
热点07 相似三角形_第2页
热点07 相似三角形_第3页
热点07 相似三角形_第4页
热点07 相似三角形_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

热点07相似三角形中考数学中《相似三角形》部分主要考向分为三类:一、黄金分割及平行线分线段成比例(每年1道,3分)二、相似三角形的判定与性质(每年1~2道,3~12分)三、相似三角形的应用(每年1~2题,3~14分)相似三角形在中考数学中的地位永远都是无法撼动的第一,不管是对相似三角形性质、判定、亦或是应用的考察,都有出题类型多变,出题形式随意的特点,并且,因为其高度的融合性,不管是在选择题、填空题、解答题的压轴题中,都可以作为压轴题的问题背景出现,也是解决压轴题问题不可或缺的方法途径。基于以上特征,相似三角的考察难度可以从中等跨越到较难,属于中考数学中较为重要的压轴考点。

考向一:平行线分线段成比例【题型1比例与比例线段】满分技巧1、比例的性质:;2、比例中项:,此时,c为a、b的比例中项;3、比例线段:在四条线段中,如果的比等于的比,那么这四条线段叫做成比例线段简称比例线段;1.(2023•金昌)若=,则ab=()A.6 B. C.1 D.2.(2023•丽水)小慧同学在学习了九年级上册“4.1比例线段”3节课后,发现学习内容是一个逐步特殊化的过程,请在横线上填写适当的数值,感受这种特殊化的学习过程.3.(2023•甘孜州)若,则=.【题型2黄金分割】满分技巧黄金分割:把线段分成两条线段,且使是的比例中项,叫做把线段黄金分割,点叫做线段的黄金分割点,其中≈0.618.1.(2023•广东)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了()A.黄金分割数 B.平均数C.众数 D.中位数2.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是()A.∠BCE=36° B.BC=AEC. D.3.(2023•达州)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为cm.(结果保留根号)【题型3平分线分线段成比例】满分技巧如图:AB∥CD∥EF1.(2023•常州)小明按照以下步骤画线段AB的三等分点:画法图形(1)以A为端点画一条射线;(2)用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE;(3)过点C、D分别画BE的平行线,交线段AB于点M、N.M、N就是线段AB的三等分点.这一画图过程体现的数学依据是()A.两直线平行,同位角相等B.两条平行线之间的距离处处相等C.垂直于同一条直线的两条直线平行D.两条直线被一组平行线所截,所得的对应线段成比例2.(2023•吉林)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=2,BD=3,则的值是()A. B. C. D.3.(2023•北京)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则的值为.考向二:相似三角形的判定与性质【题型4相似三角形的性质】满分技巧相似三角形的性质有:对应边成比例、对应角相等、对应边上的“三线”之比=相似比、对应面积之比=相似比的平方、对应周长之比=相似比。另外,相似三角形之前还有有关平行线分线段成比例的基本性质的考察。1.如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4 B.9 C.12 D.13.52.(2023•重庆)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2 B.1:4 C.1:8 D.1:163.如图,Rt△ABC中,∠ABC=90°,AB=1,BC=3,点D在BC上,BE⊥AD交AC于点E,ED的延长线与AB的延长线相交于点F,且△ABC∽△FBD,则BD=.【题型5相似三角形的判定】满分技巧重点记“AA”与“SAS”类型,小题勿忘“SSS”类型;相似三角形的判定方法中,最常用的是有两个角对应相等的两个三角形相似,其次是对应角相等,对应边成比例的两个三角形相似。三边对应成比例的两个三角形相似不长出现,但是个别小题,特别是和网格结合的问题小题中,也是有出现几率的。1.(2023•大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是.2.(2023•徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且,则AE的长为()A.1 B.2 C.1或 D.1或23.(2023•哈尔滨)如图,AC,BD相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为()A.2 B.4 C.6 D.84.(2023•无锡)如图,平行四边形ABCD中,E、F分别为BC、CD的中点,AF与DE相交于点G,则DG:EG=.4.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).5.(2023•牡丹江)如图,在正方形ABCD中,E在边CD上,BE交对角线AC于点F,CM⊥BE于M,∠CME的平分线所在直线分别交CD,AC于点N,P,连接FN.下列结论:①S△NPF:S△NPC=FM:MC;②CM=PN;③EN•CD=EC•CF;④若EM=1,MB=4,则PM=.其中正确的是.6.(2023•湘潭)在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高.(1)证明:△ABD∽△CBA;(2)若AB=6,BC=10,求BD的长.考向三:相似三角形的应用【题型6相似三角形的应用】满分技巧相似三角形在实际生活中的应用:建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度1.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为()A.6.4m B.8m C.9.6m D.12.5m2.(2023•湖州)某数学兴趣小组测量校园内一棵树的高度,采用以下方法:如图,把支架(EF)放在离树(AB)适当距离的水平地面上的点F处,再把镜子水平放在支架(EF)上的点E处,然后沿着直线BF后退至点D处,这时恰好在镜子里看到树的顶端A,再用皮尺分别测量BF,DF,EF,观测者目高(CD)的长,利用测得的数据可以求出这棵树的高度.已知CD⊥BD于点D,EF⊥BD于点F,AB⊥BD于点B,BF=6米,DF=2米,EF=0.5米,CD=1.7米,则这棵树的高度(AB的长)是米.3.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为米.4.(2023•攀枝花)拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也在一直线上,且B、E、D、G、C在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB的高度.5.(2023•南京)如图,玻璃桌面与地面平行,桌面上有一盏台灯和一支铅笔,点光源O与铅笔AB所确定的平面垂直于桌面.在灯光照射下,AB在地面上形成的影子为CD(不计折射),AB∥CD.(1)在桌面上沿着AB方向平移铅笔,试说明CD的长度不变.(2)桌面上一点P恰在点O的正下方,且OP=36cm,PA=18cm,AB=18cm,桌面的高度为60cm.在点O与AB所确定的平面内,将AB绕点A旋转,使得CD的长度最大.①画出此时AB所在位置的示意图;②CD的长度的最大值为cm.【题型7位似变换】满分技巧位似图形满足的条件:①所有经过对应点的直线都相交于同一点(该点叫做位似中心);②这个交点到两个对应点的距离之比都相等(这个比值叫做位似比)1.(2023•浙江)如图,在直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4) B.(4,2) C.(6,4) D.(5,4)2.(2023•遂宁)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC、△DEF成位似关系,则位似中心的坐标为()A.(﹣1,0) B.(0,0) C.(0,1) D.(1,0)3.(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1) B.(4,4)或(8,2)C.(4,4) D.(4,4)或(﹣4,﹣4)4.(2023•阜新)如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比为2:3,则△ABC和△DEF的面积比是.重难通关练(建议用时:40分钟)1.(2023•雅安)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为()A.4 B.6 C.8 D.102.(2023•东营)如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE=60°.若BD=4DC,DE=2.4,则AD的长为()A.1.8 B.2.4 C.3 D.3.23.(2023•绵阳)黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD的底边BC取中点E,以E为圆心,线段DE为半径作圆,其与底边BC的延长线交于点F,这样就把正方形ABCD延伸为矩形ABFG,称其为黄金矩形.若CF=4a,则AB=()A.(﹣1)a B.(﹣2)a C.(+1)a D.(+2)a4.(2023•烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形PA1A2A3,正方形PA4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34) B.(31,﹣34) C.(32,35) D.(32,0)5.(2023•内江)如图,在△ABC中,点D、E为边AB的三等分点,点F、G在边BC上,AC∥DG∥EF,点H为AF与DG的交点.若AC=12,则DH的长为()A.1 B. C.2 D.36.(2023•恩施州)如图,在△ABC中,DE∥BC分别交AC,AB于点D,E,EF∥AC交BC于点F,,BF=8,则DE的长为()A. B. C.2 D.37.(2023•威海)如图,四边形ABCD是一张矩形纸片.将其按如图所示的方式折叠:使DA边落在DC边上,点A落在点H处,折痕为DE;使CB边落在CD边上,点B落在点G处,折痕为CF.若矩形HEFG与原矩形ABCD相似,AD=1,则CD的长为()A.﹣1 B.﹣1 C.+1 D.+18.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm9.(2023•绍兴)如图,在△ABC中,D是边BC上的点(不与点B,C重合).过点D作DE∥AB交AC于点E;过点D作DF∥AC交AB于点F,N是线段BF上的点,BN=2NF,M是线段DE上的点,DM=2ME.若已知△CMN的面积,则一定能求出()A.△AFE的面积 B.△BDF的面积C.△BCN的面积 D.△DCE的面积10.(2023•泰安)如图,△ABC是等腰三角形,AB=AC,∠A=36°.以点B为圆心,任意长为半径作弧,交AB于点F,交BC于点G,分别以点F和点G为圆心,大于FG的长为半径作弧,两弧相交于点H,作射线BH交AC于点D;分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于M、N两点,作直线MN交AB于点E,连接DE.下列四个结论:①∠AED=∠ABC;②BC=AE;③ED=BC;④当AC=2时,AD=﹣1.其中正确结论的个数是()A.1 B.2 C.3 D.411.(2023•南通)如图,△ABC中,D,E分别是AB,AC的中点,连接DE,则=.12.(2023•鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且=3.若A(9,3),则A1点的坐标是.13.(2023•江西)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高PQ=6m.14.(2023•盘锦)如图,△ABO的顶点坐标是A(2,6),B(3,1),O(0,0),以点O为位似中心,将△ABO缩小为原来的,得到△A′B′O,则点A′的坐标为.15.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.16.(2023•日照)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:①EM=EN;②四边形MBND的面积不变;③当AM:MD=1:2时,S△MPE=;④BM+MN+ND的最小值是20.其中所有正确结论的序号是.17.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC=∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.18.阅读下列材料,回答问题.任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大宽度AB远大于南北走向的最大宽度,如图1.工具:一把皮尺(测量长度略小于AB)和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点O处,对其视线可及的P,Q两点,可测得∠POQ的大小,如图3.小明利用皮尺测量,求出了小水池的最大宽度AB.其测量及求解过程如下:测量过程:(ⅰ)在小水池外选点C,如图4,测得AC=am,BC=bm;(ⅱ)分别在AC,BC上测得CM=m,CN=m;测得MN=cm.求解过程:由测量知,AC=a,BC=b,CM=,CN=,∴==,又∵①∠C=∠C,∴△CMN∽△CAB,∴.又∵MN=c,∴AB=②3c(m).故小水池的最大宽度为***m.(1)补全小明求解过程中①②所缺的内容;(2)小明求得AB用到的几何知识是;(3)小明仅利用皮尺,通过5次测量,求得AB.请你同时利用皮尺和测角仪,通过测量长度、角度等几何量,并利用解直角三角形的知识求小水池的最大宽度AB,写出你的测量及求解过程.要求:测量得到的长度用字母a,b,c…表示,角度用α,β,γ…表示;测量次数不超过4次(测量的几何量能求出AB,且测量的次数最少,才能得满分).19.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,EF⊥AD;(1)当AF=DF时,求∠AED;(2)求证:△EHG∽△ADG;(3)求证:.20.(2023•南京)在平面内,将一个多边形先绕自身的顶点A旋转一个角度θ(0°<θ<180°),再将旋转后的多边形以点A为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,称这种变换为自旋转位似变换.若顺时针旋转,记作T(A,顺θ,k);若逆时针旋转,记作T(A,逆θ,k).例如:如图①,先将△ABC绕点B逆时针旋转50°,得到△A1BC1,再将△A1BC1以点B为位似中心缩小到原来的,得到△A2BC2,这个变换记作T(B,逆50°,).(1)如图②,△ABC经过T(C,顺60°,2)得到△A′B′C,用尺规作出△A′B′C.(保留作图痕迹)(2)如图③,△ABC经过T(B,逆α,k1)得到△EBD,△ABC经过T(C,顺β,k2)得到△FDC,连接AE,AF.求证:四边形AFDE是平行四边形.(3)如图④,在△ABC中,∠A=150°,AB=2,AC=1.若△ABC经过(2)中的变换得到的四边形AFDE是正方形.Ⅰ.用尺规作出点D(保留作图痕迹,写出必要的文字说明);Ⅱ.直接写出AE的长.培优争分练(建议用时:45分钟)1.已知线段a、b、c、d是成比例线段,如果a=1,b=2,c=3,那么d的值是()A.8 B.6 C.4 D.12.(2024•长沙模拟)如图,在△ABC中,DE∥AB,且,则的值为()A. B. C. D.3.(2024•鞍山模拟)如图,已知D、E分别在△ABC的AB、AC边上,△ABC∽△AED,则下列各式成立的是()A. B.AB•AD=AE•ACC. D.AD•DE=AE•EC4.(2023•宁波模拟)矩形相邻的两边长分别为25和x(x<25),把它按如图所示的方式分割成五个全等的小矩形,每一个小矩形均与原矩形相似,则x的值为()A.5 B.5 C.5 D.105.(2024•深圳模拟)一段加固后的护栏如图所示,该护栏竖直部分是由等距(任意相邻两根木条之间的距离相等)且平行的木条构成.已知AC=50cm,则BC的长度为()A.20cm B.25cm C.30cm D.6.如图,在△ABC中,DE∥BC,若,△ADE的面积为4,则△ABC的面积为()A.6 B.8 C.9 D.167.如图,在平面直角坐标系xOy中,以原点O为位似中心,把线段AB放大后得到线段CD.若点A(1,2),B(2,0),D(5,0),则点A的对应点C的坐标是()A.(2,5) B.(,5) C.(3,5) D.(3,6)8.如图,在平行四边形FBCE中,点J,G分别在边BC,EF上,JG∥BF,四边形ABCD~四边形HGFA,相似比k=3,则下列一定能求出△BIJ面积的条件()A.四边形HDEG和四边形AHGF的面积之差B.四边形ABCD和四边形HDEG的面积之差C.四边形ABCD和四边形ADEF的面积之差D.四边形JCDH和四边形HDEG的面积之差9.(2024•应县一模)如图,这是一把折叠椅子及其侧面的示意图,线段AE和BD相交于点C,点F在AE的延长线上,测得AC=30cm,BC=40cm,CD=24cm,EC=18cm,若∠BAC=60°,则∠DEF的度数为()A.120° B.125° C.130° D.135°10.如图,正方形网格图中的△ABC与△A′B′C是位似关系图,则位似中心是()A.点R B.点P C.点Q D.点O11.(2023•南岳区一模)如图,有一块直角边AB=4cm,BC=3cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A. B. C. D.12.如图是一个由A,B,C三种相似的直角三角形纸片(相似比相同)拼成的矩形,相邻纸片之间互不重叠也无缝隙,其中A,B,C的纸片的面积分别S1,S2,S3,若S1>S2>S3,则这个矩形的面积一定可以表示为()A.4S1 B.6S2 C.4S2+3S3 D.3S1+4S313.(2023秋•包河区期中)如图,点D,E,F分别在△ABC的边上,,DE∥BC,EF∥AB,点M是DF的中点,连接CM并延长交AB于点N,的值是()A. B. C. D.14.(2024•深圳模拟)若,则的值为.15.(2024•鞍山模拟)图1是伸缩折叠不锈钢晾衣架的实物图,图2是它的侧面示意图,AD与CB相交于点O,AB∥CD,根据图2中的数据可得x的值为.16.(2024•浙江模拟)如图,在Rt△ABC中,∠ACB=90°,以点B为圆心、BA为半径画劣弧交射线CB于点D,M为的中点,联结CM、AD,CM分别交AB、AD于点E、F,如果点B是线段CD的黄金分割点,则cos∠ABC=.17.(2024•雁塔区校级二模)视力表对我们来说并不陌生,它蕴含着一定的数学知识.下面我们以标准对数视力表为例,来探索视力表中的奥秘.用硬纸板复制视力表中所对应的“E”,并依次编号为①,②,放在水平桌面上.如图所示,将②号“E”沿水平桌面向右移动,直至从观测点O看去,对应顶点P1,P2,O在一条直线上为止.这时我们说,在D1处用①号“E”测得的视力与在D2处用②号“E”测得的视力相同.(1)探究图中与之间的关系,请说明理由;(2)若b1=3.2cm,b2=2cm,①号“E”的测量距离l1=80cm,要使测得的视力相同,求②号“E”的测量距离l2.18.(2024•青山湖区模拟)如图,在△ABC中,AB=AC,点D是BC上一点,点D关于直线AB对称点为E,连接DE交AB于点F,连接BE.(1)如图1,若∠C=50°,则∠EBF=°,∠BDE=°;(2)如图2,若∠C=45°,求证:.19.(2023•西安三模)党的二十大报告提出要“全面推进乡村振兴”,这是对党的十九大报告所提出的“实施乡村振兴战略”的进一步发展,彰显出新时代新征程在工农城乡关系布局上的深远谋划,为不断推进乡村振兴、加快农村现代化进程指明了方向某市为了加快城乡发展,保障市民出行方便,在流经该市的河流上架起一座桥,连通南北,铺就城市繁荣之路.小明和小颖想通过自己所学的数学知识计算该桥AF的长.如图,该桥两侧河岸平行,他们在河的对岸选定一个目标作为点A,再在河岸的这一边选出点B和点C,分别在AB、AC的延长线上取点D、E,使得DE∥BC.经测量,BC=120米,DE=210米,且点E到河岸BC的距离为60米.已知AF⊥BC于点F,请你根据提供的数据,帮助他们计算桥AF的长度.20.(2024•鞍山模拟)在△ABC中,AB=2,将△ABC绕点B逆时针旋转得到△MBN,且CN∥BM,MA的延长线与CN交于点P,若AM=3,.(1)求证:△ABM∽△CBN;(2)求AP的长.21.(2023•顺德区一模)如图,四边形ABCD为正方形,且E是边BC延长线上一点,过点B作BF⊥DE于F点,交AC于H点,交CD于G点.(1)求证:△BGC∽△DGF;(2)求证:GD•AB=DF•BG;(3)若点G是DC中点,求的值.

热点07相似三角形考向一:平行线分线段成比例【题型1比例与比例线段】满分技巧1、比例的性质:;2、比例中项:,此时,c为a、b的比例中项;3、比例线段:在四条线段中,如果的比等于的比,那么这四条线段叫做成比例线段简称比例线段;1.(2023•金昌)若=,则ab=()A.6 B. C.1 D.【分析】直接利用比例的性质,内项之积等于外项之积即可得出答案.【解答】解:∵=,∴ab=6.故选:A.2.(2023•丽水)小慧同学在学习了九年级上册“4.1比例线段”3节课后,发现学习内容是一个逐步特殊化的过程,请在横线上填写适当的数值,感受这种特殊化的学习过程.【分析】由=2,得到a=2c,因此=,得到b=c,故==,==,所以==.【解答】解:当=2时,==,理由如下:∵=2,∴a=2c,∴=,∴b=c,∴==,==,∴==.故答案为:2.3.(2023•甘孜州)若,则=.【分析】根据比例的性质解答即可.【解答】解:∵,∴=﹣1=2﹣1=1.故答案为:1.【题型2黄金分割】满分技巧黄金分割:把线段分成两条线段,且使是的比例中项,叫做把线段黄金分割,点叫做线段的黄金分割点,其中≈0.618.1.(2023•广东)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了()A.黄金分割数 B.平均数C.众数 D.中位数【分析】根据黄金分割的定义,即可解答.【解答】解:我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了黄金分割数,故选:A.2.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是()A.∠BCE=36° B.BC=AEC. D.【分析】根据等腰三角形的性质以及三角形内角和定理可得∠ABC=∠ACB=72°,再根据题意可得:CP平分∠ACB,从而可得∠BCE=∠ACE=36°,然后利用等量代换可得∠A=∠ACE=36°,从而可得AE=CE,再利用三角形的外角性质可得∠B=∠CEB=72°,从而可得CB=CE,进而可得AE=CE=CB,最后根据黄金三角形的定义可得=,从而可得=,再利用三角形的面积可得==,从而进行计算即可解答.【解答】解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB==72°,由题意得:CP平分∠ACB,∴∠BCE=∠ACE=∠ACB=36°,∴∠A=∠ACE=36°,∴AE=CE,∵∠CEB=∠A+∠ACE=72°,∴∠B=∠CEB=72°,∴CB=CE,∴AE=CE=CB,∵△BCE是顶角为36°的等腰三角形,∴△BCE是黄金三角形,∴=,∴=,∴==,∴==,故A、B、D不符合题意,C符合题意;故选:C.3.(2023•达州)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为cm.(结果保留根号)【分析】根据黄金分割的定义,进行计算即可解答.【解答】解:∵点C是靠近点B的黄金分割点,AB=80cm,∴AC=AB=×80=(40﹣40)cm,∵点D是靠近点A的黄金分割点,AB=80cm,∴DB=AB=×80=(40﹣40)cm,∴CD=AC+BD﹣AB=2(40﹣40)﹣80=(80﹣160)cm,∴支撑点C,D之间的距离为(80﹣160)cm,故答案为:(80﹣160).【题型3平分线分线段成比例】满分技巧如图:AB∥CD∥EF1.(2023•常州)小明按照以下步骤画线段AB的三等分点:画法图形(1)以A为端点画一条射线;(2)用圆规在射线上依次截取3条等长线段AC、CD、DE,连接BE;(3)过点C、D分别画BE的平行线,交线段AB于点M、N.M、N就是线段AB的三等分点.这一画图过程体现的数学依据是()A.两直线平行,同位角相等B.两条平行线之间的距离处处相等C.垂直于同一条直线的两条直线平行D.两条直线被一组平行线所截,所得的对应线段成比例【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵CM∥DN∥BE,∴AC:CD:DE=AM:MN:NB,∵AC=CD=DE,∴AM=MN=NB,∴这一画图过程体现的数学依据是两条直线被一组平行线所截,所得的对应线段成比例,故选:D.2.(2023•吉林)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=2,BD=3,则的值是()A. B. C. D.【分析】由DE∥BC,利用平行线分线段成比例,可得出=,再代入AD=2,BD=3,AB=AD+BD,即可求出结论.【解答】解:∵DE∥BC,∴====.故选:A.3.(2023•北京)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则的值为.【分析】根据题意求出AF,再根据平行线分线段成比例定理计算即可.【解答】解:∵AO=2,OF=1,∴AF=AO+OF=2+1=3,∵AB∥EF∥CD,∴==,故答案为:.考向二:相似三角形的判定与性质【题型4相似三角形的性质】满分技巧相似三角形的性质有:对应边成比例、对应角相等、对应边上的“三线”之比=相似比、对应面积之比=相似比的平方、对应周长之比=相似比。另外,相似三角形之前还有有关平行线分线段成比例的基本性质的考察。1.如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4 B.9 C.12 D.13.5【分析】根据相似三角形的性质列出方程即可求解.【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.2.(2023•重庆)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2 B.1:4 C.1:8 D.1:16【分析】根据相似三角形的性质:相似三角形周长的比等于相似比,求解即可.【解答】解:∵两个相似三角形周长的比为1:4,∴这两个三角形对应边的比为1:4,故选:B.3.如图,Rt△ABC中,∠ABC=90°,AB=1,BC=3,点D在BC上,BE⊥AD交AC于点E,ED的延长线与AB的延长线相交于点F,且△ABC∽△FBD,则BD=.【分析】利用△ABC∽△FBD得BD=3BF,ED=EC,EA=EF,设ED=EC=m,利用等腰计算得ED=,AE=,再利用双勾股得()2﹣()2=()2﹣()2,再计算即可.【解答】解:∵AB=1,BC=3,∴AC==,∵△ABC∽△FBD,∴∠C=∠BDF,∠BAC=∠F,,∴BD=3BF,设BF=x,则BD=3x,∴DF==x,由∠C=∠BDFEDC得ED=EC,由∠BAC=∠F得EA=EF,设ED=EC=m,∵AC=AE+EC=EF+EC,∴=x+2m,∴m=,即ED=,∴AE=,∵∠BAD=∠BAD,∠AOB=∠ABD=90°,∴△ABO~△ADB,∴AB2=AO×AD,∴AO=,同理DO=,∵AE2﹣AO2=EO2=ED2﹣DO2,∴()2﹣()2=()2﹣()2,∴9x2+10x﹣1=0,∴x=(负值舍去),∴BD=3x=.故答案为:.【题型5相似三角形的判定】满分技巧重点记“AA”与“SAS”类型,小题勿忘“SSS”类型;相似三角形的判定方法中,最常用的是有两个角对应相等的两个三角形相似,其次是对应角相等,对应边成比例的两个三角形相似。三边对应成比例的两个三角形相似不长出现,但是个别小题,特别是和网格结合的问题小题中,也是有出现几率的。1.(2023•大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是.【分析】利用矩形的性质得到∠D=∠C=90°,然后利用折叠的性质推导出∠BMN=∠A=90°,进而得到∠DNM=∠CMB,由此推断出△NDM∽△MCB.【解答】解:∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,∴∠DNM+∠DMN=90°,由折叠的性质可知,∠BMN=∠A=90°,∴∠DMN+∠CMB=90°,∴∠DNM=∠CMB,∴△NDM∽△MCB,故答案为:△MCB.2.(2023•徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且,则AE的长为()A.1 B.2 C.1或 D.1或2【分析】由直角三角形的性质可求AC=2BC=4,AB=2,∠C=60°,分两种情况讨论,由三角形中位线定理和相似三角形的性质可求解.【解答】解:在△ABC中,∠B=90°,∠A=30°,BC=2,∴AC=2BC=4,AB=2,∠C=60°,∵点D是AB的中点,∴AD=,∵,∴DE=1,如图,当∠ADE=90°时,∵∠ADE=∠ABC,,∴△ADE∽△ABC,∴,∴AE=2,如图,当∠ADE≠90°时,取AC的中点H,连接DH,∵点D是AB中点,点H是AC的中点,∴DH∥BC,DH=BC=1,∴∠AHD=∠C=60°,DH=DE=1,∴∠DEH=60°,∴∠ADE=∠A=30°,∴AE=DE=1,故选:D.3.(2023•哈尔滨)如图,AC,BD相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为()A.2 B.4 C.6 D.8【分析】由AB∥DC易得△CDO∽△ABO,根据相似三角形的性质可得=,于是AC=OA+OC=OA+OA=12,求出OA=8,易得MN为△AOB的中位线,则MN=OA.【解答】解:∵AB∥DC,∴△CDO∽△ABO,∴,∵DO:OB=1:2,∴=,∴OC=OA,∵AC=OA+OC=12,∴OA+OA=12,∴OA=8,∵MN∥AC,M是AB的中点,∴MN为△AOB的中位线,∴MN=OA==4.故选:B.4.(2023•无锡)如图,平行四边形ABCD中,E、F分别为BC、CD的中点,AF与DE相交于点G,则DG:EG=.【分析】延长AF、BC交于点H,由平行四边形的性质及E、F分别为BC、CD的中点,得CB∥AD,BE=CE,CF=DF,则CB=AD=2CE,再证明△HCF∽△ADF,得==1,则HC=AD=CB=2CE,所以HE=3CE,再证明△ADG∽△HEG,得==,于是得到问题的答案.【解答】解:延长AF、BC交于点H,∵四边形ABCD是平行四边形,E、F分别为BC、CD的中点,∴CB∥AD,BE=CE,CF=DF,∴CB=AD=2CE,∵HC∥AD,∴△HCF∽△ADF,∴==1,∴HC=AD=CB=2CE,∴HE=HC+CE=2CE+CE=3CE,∵AD∥HE,∴△ADG∽△HEG,∴===,∴DG:EG=2:3,故答案为:2:3.4.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DFA,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DFA,∴∠FDE=∠DFA,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.5.(2023•牡丹江)如图,在正方形ABCD中,E在边CD上,BE交对角线AC于点F,CM⊥BE于M,∠CME的平分线所在直线分别交CD,AC于点N,P,连接FN.下列结论:①S△NPF:S△NPC=FM:MC;②CM=PN;③EN•CD=EC•CF;④若EM=1,MB=4,则PM=.其中正确的是.【分析】记N到PC的距离为h,可得==,证明△PMF∽△PCN,有,∠PFM=∠PNC,,同理△NCM∽△NPC,有,故,从而判断①正确;证明M,F,C,N四点共圆,得∠FNC=∠FMC=90°,可得△EFN∽△EBC,,判断③不正确;证明△CME∽△BMC,得CM2=BM•EM=4,CM=2,(负根舍去),,BC==2=AB,同理可得:△CEF∽△ABF,有==,故EF=BE=,BF=,FM=BM﹣BF=4﹣=,由△PMF∽△BCF,有,而△EFN∽△EBC,可得EN=EC=,CN=EC﹣EN=,CF=CN=,可得PM=,判断④正确;根据△EMN∽△ECF,可得=,MN=,PN=PM+MN=+=,判断②不正确.【解答】解:记N到PC的距离为h,∴==,∵CM⊥BE,四边形ABCD是正方形,∴∠CME=90°,∠PCN=45°,∵MN平分∠CME,∴∠CMN=∠EMN=∠PMF=45°=∠PCN,∵∠MPF=∠NPC,∴△PMF∽△PCN,∴,∠PFM=∠PNC,∴,同理可得:△NCM∽△NPC,∴,∴,∴=,∴=,故①正确;∵∠PMF=45°=∠PCE,∴∠PCE+∠FMN=180°,∴M,F,C,N四点共圆,∴∠FNC=∠FMC=90°,∴FN∥BC,∴△EFN∽△EBC,∴,∴EN•CD=EC•FN,故③不正确;∵EM=1,BM=4,∴BE=5,∵正方形ABCD,CM⊥BE,∴∠BCD=∠BMC=∠EMC=90°,∴∠MEC+∠MCE=90°=∠MCE+∠BCM,∴∠MEC=∠BCM,∴△CME∽△BMC,∴,即CM2=BM•EM=4,∴CM=2,(负根舍去),∴,BC==2=AB,同理可得:△CEF∽△ABF,∴==,∴EF=BF,∴EF=BE=,BF=,∴FM=BM﹣BF=4﹣=,∵∠PMF=∠ACB=45°,∠PFM=∠BFC,∴△PMF∽△BCF,∴,∵△EFN∽△EBC,∴,∴EN=EC=,∴CN=EC﹣EN=,∴CF=CN=,∴=,∴PM=,故④正确;同理可得:△EMN∽△ECF,∴,即=,∴MN=,∴PN=PM+MN=+=,而CM=2,∴CM≠PN,故②不正确;综上所述:正确的有①④,故答案为:①④.6.(2023•湘潭)在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高.(1)证明:△ABD∽△CBA;(2)若AB=6,BC=10,求BD的长.【分析】(1)根据已知条件得出∠BDA=∠BAC,又∠B为公共角,于是得出△ABD∽△CBA;(2)根据相似三角形的性质即可求出BD的长.【解答】(1)证明:∵AD是斜边BC上的高,∴∠BDA=90°,∵∠BAC=90°,∴∠BDA=∠BAC,又∵∠B为公共角,∴△ABD∽△CBA;(2)解:由(1)知△ABD∽△CBA,∴,∴,∴BD=3.6.考向三:相似三角形的应用【题型6相似三角形的应用】满分技巧相似三角形在实际生活中的应用:建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度1.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为()A.6.4m B.8m C.9.6m D.12.5m【分析】根据镜面反射的性质,△ABC∽△EDC,再根据相似三角形对应边成比例列式求解即可.【解答】解:如图:∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵∠ACB=∠DCE,∴△ABC∽△EDC,∴,即,∴DE=8(m),故选:B.2.(2023•湖州)某数学兴趣小组测量校园内一棵树的高度,采用以下方法:如图,把支架(EF)放在离树(AB)适当距离的水平地面上的点F处,再把镜子水平放在支架(EF)上的点E处,然后沿着直线BF后退至点D处,这时恰好在镜子里看到树的顶端A,再用皮尺分别测量BF,DF,EF,观测者目高(CD)的长,利用测得的数据可以求出这棵树的高度.已知CD⊥BD于点D,EF⊥BD于点F,AB⊥BD于点B,BF=6米,DF=2米,EF=0.5米,CD=1.7米,则这棵树的高度(AB的长)是米.【分析】过点E作水平线交AB于点G,交CD于点H,根据镜面反射的性质求出△CHE∽△AGE,再根据对应边成比例解答即可.【解答】解:过点E作水平线交AB于点G,交CD于点H,如图,∵DB是水平线,CD,EF,AB都是铅垂线,∴DH=EF=GB=0.5米,EH=DF=2米,EG=FB=6米,∴CH=CD﹣DH=1.7﹣0.5=1.2(米),又根据题意,得∠CHE=∠AGE=90°,∠CEH=∠AEG,∴△CHE∽△AGE,∴,即,解得:AG=3.6米,∴AB=AG+GB=3.6+0.5=4.1(米).故答案为:4.1.3.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为米.【分析】过点F作FG⊥CD,垂足为G,延长FG交AB于点H,根据题意可得:FH⊥AB,AH=CG=EF=1.4米,AC=GH=20米,CE=FG=10米,从而可得∠DGF=∠BHF=90°,DG=5.6米,然后证明A字模型相似三角形△FDG∽△FBH,从而利用相似三角形的性质求出BH的长,最后利用线段的和差关系进行计算,即可解答.【解答】解:过点F作FG⊥CD,垂足为G,延长FG交AB于点H,由题意得:FH⊥AB,AH=CG=EF=1.4米,AC=GH=20米,CE=FG=10米,∴∠DGF=∠BHF=90°,∵CD=7米,∴DG=CD﹣CG=7﹣1.4=5.6(米),∵∠DFG=∠BFH,∴△FDG∽△FBH,∴=,∴=,∴BH=16.8,∴AB=BH+AH=16.8+1.4=18.2(米),∴塔的高度为18.2米,故答案为:18.2.4.(2023•攀枝花)拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也在一直线上,且B、E、D、G、C在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB的高度.【分析】设BD=xm,则BC=(x+48)m,通过证明△ABD∽△EFD,得到,即,同理得到,则可建立方程,解方程即可得到答案.【解答】解:设BD=xm,则BC=BD+DG+CG=x+46﹣2+4=(x+48)m,∵AB⊥BC,EF⊥BC,∴AB∥EF,∴△ABD∽△FED,∴,即,同理可证△ABC∽△HGC,∴,即,∴,解得x=48,经检验,x=48是原方程的解,∴=,∴AB=36m,∴该古建筑AB的高度为36m.5.(2023•南京)如图,玻璃桌面与地面平行,桌面上有一盏台灯和一支铅笔,点光源O与铅笔AB所确定的平面垂直于桌面.在灯光照射下,AB在地面上形成的影子为CD(不计折射),AB∥CD.(1)在桌面上沿着AB方向平移铅笔,试说明CD的长度不变.(2)桌面上一点P恰在点O的正下方,且OP=36cm,PA=18cm,AB=18cm,桌面的高度为60cm.在点O与AB所确定的平面内,将AB绕点A旋转,使得CD的长度最大.①画出此时AB所在位置的示意图;②CD的长度的最大值为cm.【分析】(1)设AB平移到EF,EF在地面上形成的影子为MN.利用平行相似即可;(2)①以A为圆心,AB长为半径画圆,当OQ与⊙A相切于H时,此时CD最大为CQ.②先证明△GHA~△GPO,再利用勾股定理求出AG=30,由,即可求出CD的长度的最大值.【解答】解:(1)设AB平移到EF,EF在地面上形成的影子为MN.∵AB∥CD,∴△OAB~△OCD,△OEF~△OMN,△OEB~△OMD,∴,,,∴,∵EF=AB,∴MN=CD,∴沿着AB方向平移时,CD长度不变.(2)①以A为圆心,AB长为半径画圆,当OQ与⊙A相切于H时,此时CD最大为CQ.此时AB所在位置为AH.②∵∠HGA=∠PGO,∠AHG=∠OPG=90°,∴△GHA~△GPO,∴,∴设GA=x,则GO=2x,在Rt△OPG中,OP2+PG2=OG2,∴362+(18+x)2=(2x)2,∴x2﹣12x﹣540=0,∴x1=30,x2=﹣18(舍去),∴AG=30,由①,∴,∴CQ=80,即CD的长度的最大值为80cm.【题型7位似变换】满分技巧位似图形满足的条件:①所有经过对应点的直线都相交于同一点(该点叫做位似中心);②这个交点到两个对应点的距离之比都相等(这个比值叫做位似比)1.(2023•浙江)如图,在直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4) B.(4,2) C.(6,4) D.(5,4)【分析】根据位似变换的性质解答即可.【解答】解:∵△ABC与△A′B′C′位似,△A′B′C′与△ABC的相似比为2:1,∴△ABC与△A′B′C′位似比为1:2,∵点C的坐标为(3,2),∴点C′的坐标为(3×2,2×2),即(6,4),故选:C.2.(2023•遂宁)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC、△DEF成位似关系,则位似中心的坐标为()A.(﹣1,0) B.(0,0) C.(0,1) D.(1,0)【分析】根据位似中心的定义作答.【解答】解:如图:△ABC与△DEF的对应顶点的连线相交于点(﹣1,0),则位似中心的坐标为(﹣1,0).故选:A.3.(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1) B.(4,4)或(8,2) C.(4,4) D.(4,4)或(﹣4,﹣4)【分析】根据位似变换的性质计算,得到答案.【解答】解:∵以原点O为位似中心,相似比为2,把△OAB放大,点A的坐标为(2,2),∴点A的对应点A′的坐标为(2×2,2×2)或(2×(﹣2),2×(﹣2)),即(4,4)或(﹣4,﹣4),故选:D.4.(2023•阜新)如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比为2:3,则△ABC和△DEF的面积比是.【分析】先利用位似的性质得到△ABC∽△DEF,相似比为2:3,然后根据相似三角形的性质解决问题.【解答】解:∵△ABC与△DEF是以点O为位似中心的位似图形,位似比为2:3,∴△ABC∽△DEF,相似比为2:3,∴△ABC与△DEF的面积之比为22:32=4:9.故答案为:4:9.重难通关练(建议用时:40分钟)1.(2023•雅安)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为()A.4 B.6 C.8 D.10【分析】根据平行四边形的性质得出AD∥BC,AB∥CD,AD=BC,于是推出△DEF∽△BEC,△DFC∽△AFG,先求出DF与BC的比值,继而得出DF与AF的比值,再根据相似三角形对应边成比例即可求出GF的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵AD∥BC,∴△DEF∽△BEC,∴,∵EF=1,EC=3,∴,即,∴,∵AB∥CD,∴△DFC∽△AFG,∴,∵EF=1,EC=3,∴CF=4,∴,∴GF=8,故选:C.2.(2023•东营)如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE=60°.若BD=4DC,DE=2.4,则AD的长为()A.1.8 B.2.4 C.3 D.3.2【分析】先证∠CAD=∠BDE,再根据∠B=∠C=60°,得出△ADC∽△DEB,根据相似三角形的性质即可求出AD的长.【解答】解:∵△ABC是等边三角形,∴BC=AC,∠B=∠C=60°,∴∠CAD+∠ADC=120°,∵∠ADE=60°.∴∠BDE+∠ADC=120°,∴∠CAD=∠BDE,∴△ADC∽△DEB,∴,∵BD=4DC,∴设DC=x,则BD=4x,∴BC=AC=5x,∴,∴AD=3,故选:C.3.(2023•绵阳)黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD的底边BC取中点E,以E为圆心,线段DE为半径作圆,其与底边BC的延长线交于点F,这样就把正方形ABCD延伸为矩形ABFG,称其为黄金矩形.若CF=4a,则AB=()A.(﹣1)a B.(﹣2)a C.(+1)a D.(+2)a【分析】设AB=x,根据正方形的性质可得AB=BC=x,然后根据黄金矩形的定义可得=,从而可得=,最后进行计算即可解答.【解答】解:设AB=x,∵四边形ABCD是正方形,∴AB=BC=x,∵矩形ABFG是黄金矩形,∴=,∴=,解得:x=(2+2)a,经检验:x=(2+2)a是原方程的根,∴AB=(2+2)a,故选:D.4.(2023•烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形PA1A2A3,正方形PA4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34) B.(31,﹣34) C.(32,35) D.(32,0)【分析】根据位似变换的概念、点的坐标的变化情况找出点的横纵坐标的变化规律,根据规律解答即可.【解答】解:由题意可知:点A1(﹣2,1),点A4(﹣1,2),点A7(0,3),∵1=3×0+1,4=3×1+1,7=3×2+1,……,100=3×33+1,﹣2=0﹣2,﹣1=1﹣2,0=2﹣2,1=0+1,2=1+1,3=2+1,∴顶点A100的坐标为(33﹣2,33+1),即(31,34),故选:A.5.(2023•内江)如图,在△ABC中,点D、E为边AB的三等分点,点F、G在边BC上,AC∥DG∥EF,点H为AF与DG的交点.若AC=12,则DH的长为()A.1 B. C.2 D.3【分析】首先根据点D、E为边AB的三等分点得AB=3BE,AE=2AD,再根据EF∥AC得△BEF和△BAC相似,从而可求出EF=4,然后根据DG∥EF得△ADH和△AEF相似,进而可求出DH的长.【解答】解:∵点D、E为边AB的三等分点,∴AD=DE=EB,∴AB=3BE,AE=2AD,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BE:AB,∵AC=12,AB=3BE,∴EF:12=BE:3BE,∴EF=4,∵DG∥EF,∴△ADH∽△AEF,∴DH:EF=AD:AE,∵EF=4,AE=2AD,∴DH:4=AD:2AD,∴DH=2.故选:C.6.(2023•恩施州)如图,在△ABC中,DE∥BC分别交AC,AB于点D,E,EF∥AC交BC于点F,,BF=8,则DE的长为()A. B. C.2 D.3【分析】由DE∥BC,EF∥AC,得四边形EFCD是平行四边形,DE=CF,设DE=CF=x,由△AED∽△ABC,=可得=,即可解得答案.【解答】解:∵DE∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,设DE=CF=x,∵BF=8,∴BC=BF+CF=8+x,∵DE∥BC,∴△AED∽△ABC,∴=,∵=,∴=,∴=,即=,解得x=,故选:A.7.(2023•威海)如图,四边形ABCD是一张矩形纸片.将其按如图所示的方式折叠:使DA边落在DC边上,点A落在点H处,折痕为DE;使CB边落在CD边上,点B落在点G处,折痕为CF.若矩形HEFG与原矩形ABCD相似,AD=1,则CD的长为()A.﹣1 B.﹣1 C.+1 D.+1【分析】设HG=x,根据矩形的性质可得∠A=∠ADH=90°,AD=BC=1,再根据折叠的性质可得:∠A=∠AHE=90°,AD=DH=1,BC=CG=1,从而可得四边形ADHE是正方形,然后利用正方形的性质可得AD=HE=1,最后利用相似多边形的性质,进行计算即可解答.【解答】解:设HG=x,∵四边形ABCD是矩形,∴∠A=∠ADH=90°,AD=BC=1,由折叠得:∠A=∠AHE=90°,AD=DH=1,BC=CG=1,∴四边形ADHE是矩形,∵AD=DH,∴四边形ADHE是正方形,∴AD=HE=1,∵矩形HEFG与原矩形ABCD相似,∴=,∴=,解得:x=﹣1或x=﹣﹣1,经检验:x=﹣1或x=﹣﹣1都是原方程的根,∵GH>0,∴GH=﹣1,∴DC=2+x=+1,故选:C.8.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.9.(2023•绍兴)如图,在△ABC中,D是边BC上的点(不与点B,C重合).过点D作DE∥AB交AC于点E;过点D作DF∥AC交AB于点F,N是线段BF上的点,BN=2NF,M是线段DE上的点,DM=2ME.若已知△CMN的面积,则一定能求出()A.△AFE的面积 B.△BDF的面积C.△BCN的面积 D.△DCE的面积【分析】如图所示,连接ND,证明△FBD∽△EDC,得出=,由已知得出,则,又∠NFD=∠MEC,则△NFD∽△MEC,进而得出∠MCD=∠NDB,可得MC∥ND,结合题意得出,即可求解.【解答】解:如图所示,连接ND,∵DE∥AB,DF∥AC,∴∠ECD=∠FDB,∠FBD=∠EDC,∠BFD=∠A,∠A=DEC.∴△FBD∽△EDC,∠NFD=∠MEC.∴=,∵DM=2ME,BN=2NF,∴,ME=DE,∴∴,又∵∠NFD=∠MEC,∴△NFD∽△MEC.∴∠ECM=∠FDN.∵∠FDB=∠ECD,∴∠MCD=∠NDB.∴MC∥ND.∴S△MNC=S△MDC.∵DM=2ME,∴.故选:D.10.(2023•泰安)如图,△ABC是等腰三角形,AB=AC,∠A=36°.以点B为圆心,任意长为半径作弧,交AB于点F,交BC于点G,分别以点F和点G为圆心,大于FG的长为半径作弧,两弧相交于点H,作射线BH交AC于点D;分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于M、N两点,作直线MN交AB于点E,连接DE.下列四个结论:①∠AED=∠ABC;②BC=AE;③ED=BC;④当AC=2时,AD=﹣1.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】根据角平分线的定义,等腰三角形的判定和性质,可得到△BCD也是含有36°角的等腰三角形,进而得出AD=BD=BC,再根据三角形内角和定理和等腰三角形的判定,进一步得出AE=AD=BD=BC,对①作出判断;在根据平行线的判定方法可得出DE∥BC,对①作出判断;由AE≠BE,可得DE不是△ABC的中位线,对③作出判断,最后再根据相似三角形的判定和性质,得出△BCD∽△ABC,进而求出BC,即AD即可对④作出判断.【解答】解:由题意可知,BD是∠ABC的平分线,MN是线段BD的中垂线,∵AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,在△BCD中,∠C=72°,∠CBD=36°,∴∠BDC=180°﹣36°﹣72°=72°=∠C,∴BD=BC,∴AD=BD=BC,∵MN是BD的中垂线,∴EB=ED,∴∠BDE=∠ABD=36°=∠CBD,∴DE∥BC,∴∠AED=∠ABC,因此①正确,∴AE=AD=BD=BC,因此②正确;由于DE不是△ABC的中位线,因此③不正确;∵∠CBD=∠BAC=36°,∠BCD=∠ACB=72°,∴△BCD∽△ABC,∴=,即BC2=AC•CD,设BC=x,则CD=2﹣x,∴x2=2×(2﹣x),解得x=﹣1﹣(舍去)或x=﹣1,即BC=﹣1=AD,因此④正确,综上所述,正确的结论有①②④,共有3个,故选:C.11.(2023•南通)如图,△ABC中,D,E分别是AB,AC的中点,连接DE,则=.【分析】根据已知易证△ADE∽△ABC,再根据相似三角形的面积比等于相似比的平方即可求解.【解答】解:∵D,E分别是AB,AC的中点,∴,又∵∠A=∠A,∴△ADE∽△ABC,∴=()2=.故答案为:.12.(2023•鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且=3.若A(9,3),则A1点的坐标是.【分析】根据位似变换的性质计算,得到答案.【解答】解:∵△ABC与△A1B1C1位似,且原点O为位似中心,且=3,点A(9,3),∴×9=3,×3=1,即A1点的坐标是(3,1),故答案为:(3,1).13.(2023•江西)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高PQ=6m.【分析】根据题意可知:△ABC∽△AQP,从而可以得到,然后代入数据计算,即可得到PQ的长.【解答】解:由题意可得,BC∥PQ,AB=40cm,BD=20cm,AQ=12m,∴△ABD∽△AQP,∴,即,解得QP=6,∴树高PQ=6m,故答案为:614.(2023•盘锦)如图,△ABO的顶点坐标是A(2,6),B(3,1),O(0,0),以点O为位似中心,将△ABO缩小为原来的,得到△A′B′O,则点A′的坐标为.【分析】根据位似变换的性质计算,得到答案.【解答】解:∵以原点O为位似中心,把△ABC缩小为原来的,可以得到△A'B'O,点A的坐标为(2,6),∴点A'的坐标是(2×,6×)或(2×(﹣),6×(﹣)),即(,2)或(﹣,﹣2).故答案为:(,2)或(﹣,﹣2).15.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.16.(2023•日照)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:①EM=EN;②四边形MBND的面积不变;③当AM:MD=1:2时,S△MPE=;④BM+MN+ND的最小值是20.其中所有正确结论的序号是.【分析】①根据等腰三角形的性质判定;②先根据三角形相似的性质求出对角线的长,再根据面积等于对角线乘积的一半求出面积;③根据相似三角形的面积比等于相似比的平方求解;④先根据轴对称确定最小值,再根据勾股定理求解.【解答】解:①∵MN⊥BD,要使EM=EN,需要MP=NP,而P不一定是MN的中点,故①是错误的;②如图1:延长ME交BC于F,在矩形ABCD中,BD=10,∵ME⊥AD,MN⊥BD,∴∠EMN+∠DMN=∠EMN+∠MED=90°,∴∠DMN=∠MED,∵∠MFN=∠A=90°,∴△MFN∽△DAB,∴,即:,解得:FN=4.5,MN=7.5,∴四边形MBND的面积为:×BD×NM=×10×7.5=37.5,故②是正确的;③∵AB∥ME,∴△ABD∽△MED,∴,∴ME=4,∵∠ADB=∠EMN,∠MPB=∠A=90°,∴△MEP∽△DBA,∴=()2=,∵S△ABD=24,∴S△MPE=,故③是正确的;④∵BM+MN+ND=BM+ND+7.5,当BM+ND最小时,BM+MN+ND的值最小,作B、D关于AD、BC的对称点B′,D′,如图2:把图2的CD′移到图3的C′D′,使得CD′=4.5,连接B′D′,则B′D′就是BM+ND的最小值,∴B′D′==12.5,即BM+MN+ND的最小值是12.5+7.5=20,故④是正确的,故答案为:②③④.17.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC=∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.【分析】(1)证明△ACF≌△DAE(ASA),即可解决问题;(2)证明△ABF∽△CDE,得AF•DE=BF•CE,结合(1)AF=DE,即可解决问题.【解答】证明:(1)∵AD∥BC,∴∠ACF=∠DAC∵∠FAC=∠ADE,AC=AD,∴△ACF≌△DAE(ASA),∴AF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论