




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页北师大版九年级数学下册《3.1圆》同步测试题含答案学校:___________班级:___________姓名:___________考号:___________【A层基础夯实】知识点1圆的认识1.到圆心的距离大于半径的点的集合是()A.圆的内部 B.圆的外部C.圆 D.圆的外部和圆2.如图,☉O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦有()A.2条 B.3条 C.4条 D.5条3.(2023·扬州期中)等于23A.劣弧 B.半圆 C.优弧 D.圆4.如图,☉O的直径AB与弦CD的延长线交于点E,若OB=DE,∠E=26°,则∠AOC的度数是()A.52° B.62° C.72° D.78°知识点2点和圆的位置关系5.☉O的半径为3,点P在☉O外,点P到圆心的距离为d,则d需要满足的条件是()A.d>3 B.d=3C.0<d<3 D.无法确定6.(2024·北京期末)已知点P在半径为r的☉O内,且OP=3,则r的值可能为()A.1 B.2 C.3 D.47.如图,在☉O中,点A在圆内,点B在圆上,点C在圆外,若OA=3,OC=5,则OB的长度可能为(写出一个即可).
8.已知圆O的面积为25π,若点P在圆上,则PO=.
9.已知☉O和直线l,过圆心O作OP⊥l,P为垂足,A,B,C为直线l上三个点,且PA=2cm,PB=3cm,PC=4cm,若☉O的半径为5cm,OP=4cm,判断A,B,C三点与☉O的位置关系.【B层能力进阶】10.如果☉O是以原点O为圆心,2为半径的圆,则点A(1,1)与☉O的位置关系是()A.在☉O内 B.在☉O外C.在☉O上 D.无法确定11.已知☉O的半径OA长为1,OB=2,则可以得到的正确图形可能是()12.(易错警示,忽视分类讨论而漏解)已知点P为平面内一点,若点P到☉O上的点的最长距离为5,最短距离为1,则☉O的半径为.
13.如图,在矩形ABCD中,AB=2,AD=1,以顶点D为圆心作半径为r的圆.若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.
14.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于125π米,则跑道的宽度为米15.如图,AB=3cm,试说明具有下列性质的点的集合是怎样的图形.(1)和已知点A的距离等于2cm的点的集合;(2)和点B的距离大于2cm的点的集合;(3)和点A,B的距离都大于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合.【C层创新挑战(选做)】16.(几何直观、推理能力、运算能力)如图,在△ABC中,AB=AC,BC=4,tanB=2.点D是AB的中点.(1)求AB长和sinA的值.(2)以点D为圆心,r为半径作☉D.如果点B在☉D内,点C在☉D外,试求r的取值范围.参考答案【A层基础夯实】知识点1圆的认识1.到圆心的距离大于半径的点的集合是(B)A.圆的内部 B.圆的外部C.圆 D.圆的外部和圆2.如图,☉O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦有(B)A.2条 B.3条 C.4条 D.5条3.(2023·扬州期中)等于23A.劣弧 B.半圆 C.优弧 D.圆4.如图,☉O的直径AB与弦CD的延长线交于点E,若OB=DE,∠E=26°,则∠AOC的度数是(D)A.52° B.62° C.72° D.78°知识点2点和圆的位置关系5.☉O的半径为3,点P在☉O外,点P到圆心的距离为d,则d需要满足的条件是(A)A.d>3 B.d=3C.0<d<3 D.无法确定6.(2024·北京期末)已知点P在半径为r的☉O内,且OP=3,则r的值可能为(D)A.1 B.2 C.3 D.47.如图,在☉O中,点A在圆内,点B在圆上,点C在圆外,若OA=3,OC=5,则OB的长度可能为4(答案不唯一)(写出一个即可).
8.已知圆O的面积为25π,若点P在圆上,则PO=5.
9.已知☉O和直线l,过圆心O作OP⊥l,P为垂足,A,B,C为直线l上三个点,且PA=2cm,PB=3cm,PC=4cm,若☉O的半径为5cm,OP=4cm,判断A,B,C三点与☉O的位置关系.【解析】如图,因为PA=2cm,OA=22+42=20<5,所以点A因为PB=3cm,OB=32+4所以点B在☉O上;因为PC=4cm,OC=42+42=32>5=r,所以点C在【B层能力进阶】10.如果☉O是以原点O为圆心,2为半径的圆,则点A(1,1)与☉O的位置关系是(C)A.在☉O内 B.在☉O外C.在☉O上 D.无法确定11.已知☉O的半径OA长为1,OB=2,则可以得到的正确图形可能是(D)12.(易错警示,忽视分类讨论而漏解)已知点P为平面内一点,若点P到☉O上的点的最长距离为5,最短距离为1,则☉O的半径为2或3.
13.如图,在矩形ABCD中,AB=2,AD=1,以顶点D为圆心作半径为r的圆.若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是1<r<5.
14.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于125π米,则跑道的宽度为
6515.如图,AB=3cm,试说明具有下列性质的点的集合是怎样的图形.(1)和已知点A的距离等于2cm的点的集合;(2)和点B的距离大于2cm的点的集合;(3)和点A,B的距离都大于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合.【解析】(1)和已知点A的距离等于2cm的点的集合是以点A为圆心,以2cm为半径的☉A;(2)和点B的距离大于2cm的点的集合是以点B为圆心,以2cm为半径的☉B的外部;(3)如图①分别以A,B为圆心,以2cm为半径作☉A,☉B,☉A和☉B的外部.(4)如图②,☉A和☉B的重合部分(不包含圆周上的点).【C层创新挑战(选做)】16.(几何直观、推理能力、运算能力)如图,在△ABC中,AB=AC,BC=4,tanB=2.点D是AB的中点.(1)求AB长和sinA的值.【解析】(1)如图,过点A作AE⊥BC于点E.过点C作CM⊥AB于点M.∵AB=AC,BC=4,∴BE=12BC∵tanB=AEBE=2,∴AE=4,∴AB=25∵CM⊥AB,∴∠AMC=90°,∵sin∠BAC=CMAC,∴CM=AC·sin∠∵S△ABC=12AB·CM,∴S△ABC=12BC·AE=12AB·AC·sin∴sin∠BAC=BC·AEAB·AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论