版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年《圆锥的体积》教案
《圆锥的体积》教案1
教材分析:
圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实
验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。具体来说有这样几个变
化:
(1)加强了所学知识与现实生活的联系。教材通过列举大量现实生活中具有圆锥体特征实
物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。
当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所
学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。
(2)加强了对图形特征,体积、方法的探索过程。在以往的教学中,这部分内容的编排更
侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和
实践操作方面都显不够。实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,
使学生获得较多的有关自主探索和空间观念的训练机会。
(3)加强了学生在操作中对空间与图形问题的思考。
学情分析:
加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。教材注意鼓励学生运用
已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思
考习惯。如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。圆锥体积的教学是按照引出问
题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研
究方法和思维方式的训练,发展和提高自主学习的能力。
教学目标:
1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。
2、提高学生实际应用的能力。
3、培养学生利于学习,勇于探索的精神。
教学重点:圆锥的‘体积公式的推导过程。
教学难点:进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。
教学方法:合作交流自主探究动手操作
教学准备:同样的圆柱形容器若干,与圆柱等底等高的圆推,与圆柱等高不等底的圆锥,与
圆柱不等高不等底的圆锥,沙子和水
教学过程:
一复习导入
1、提问:援助的体积公式是什么?
2、出示圆锥的几何图形,学生说出圆锥的底面、侧面和高
3、导入:同学们,前面我们认识了圆推,掌握了它的特征,那么,圆锥的体积公式怎样计
算呢?这节课我们就来研究这个问题。(板书课题:圆锥的体积)
二探究新知
(-)指导探究圆锥的体积计算公式
1.师:下面我们用实验来探究圆锥体积的计算方法。
(1)老师给每组同学都准备了圆柱体和圆锥体容器、沙子和水
(2)实验要求
做一做:实验时先往圆锥里装满水往圆柱里倒,直到把圆柱里得倒满水为止。
比一比:实验前比一比援助和圆锥底面和高的关系。
想一想:通过实验你发现了什么?
2.学生分组试验,边实验边做记录
3.学生汇报试验结果
4.分析数据,做出判断
观察全班数据,发现了大多数情况下圆柱能装下三个圆锥的沙和水
5.进一步观察分析,什么情况下圆柱能装下三个圆锥的沙和水
6.教师强调:只要是等底等高的就存在上面的现象。
7.师演示(实验)等底等高的圆柱和圆锥
板书:V圆柱=3V圆锥或V圆推=1/3V圆柱
8.你们能用字幕表示他们的关系么?
V圆锥=1/3V圆柱=l/3sh
9.要求圆锥的体积必须知道什么?
(二)解决实际问题
导言:同学们对本节课的知识学得很好,下面请同学们解决一下实际问题。
出示例3:
(1)指名读题,分析题意
(2)指两名同学板演,其他齐做
(3)汇报,说解题思路
(4)拓展:如果就给出这堆沙子,没有任何数据,说说你解决这个问题的办法。
(三)质疑
三巩固练习
(一)实战训练营:填空
L圆锥的底面是一个()形,从圆锥的顶点到底面圆心的距离是圆锥的()0
2、圆锥的体积等于和它()的圆柱体体积的(),所以圆锥体的械()
3、把一个圆柱削成一个最大的圆锥,这个圆锥的体积是原来圆柱体积的(),削去部分体
积是圆柱体体积的()。
4、一个圆锥体体积是5.4立方分米,与它等底等高的圆柱的体积是()。
(二)数学门诊部:判断对错
1、两个圆锥体的底面积相等,他们的体积也相等.()
2、圆锥的体积是圆柱体积的1/3。()
3、圆柱的体积一定大于圆锥的体积。()
4、一个画锥与一个圆柱等底等体积,那么圆锥的底面积是圆柱的1/3。()
(三)求下列圆锥的体积
1、底面半径是2cm,高是8cm
2、底面直径是2dm,高是5.8dm
3、底面周长是6.28cm扃是7.6cm
4、高是16dm,底面直径是高的5/8。
(四)解决实际问题
一个圆锥形小麦堆,底面周长是31.4m,高是4m,如果每立方米小麦重750kg,那么这堆小
麦重多少千克?
(五)维训练题
一个圆锥形的小麦堆,量得其占地面积是12平方米,高是1.8米,把这堆小麦装入一个粮
仓里,正好站这个粮仓容积的2/15,这个粮仓得的容积是多少立方米?
四总结这节课你有哪些收获?
五作业练习四3478题
板书设计圆锥体的体积
V圆柱=3V圆锥或V圆锥=1/3V圆柱
V圆锥=1/3V圆柱二l/3sh
《圆锥的体积》教案2
教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟
练运用所学公式计算解答实际问题;
教学准备:幻灯片、电脑制图
教学过程:
--出示课题,引人复习内容;
1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;
板书课题
2.圆柱体的体积怎么求?
板书:V圆柱;Sh
3.圆锥体的体积怎么求?
板书:V圆锥=1/3Sh
4.公式中的s、h分别表示什么?1/3表示什么?
小结:求圆柱体和圆锥体的体积,首先要正确应用公式。
板书:1.正确应用公式
当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须
先求出什么?
二.基础练习
根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)
计算这些形体的体积:
(1)S底=1.5平方米h=5米求V圆柱
(2»底=1.5平方米h=5米求V圆锥
⑶r=10分米h=2米求V圆柱
(4)C=6.28米h=6米求V圆锥
(1)、(2)两题条件相同,所求不同;
板书:2.圆锥体积一定要乘1/3
(3)、(4)两题都要先求出底面积;
板书:3.单位名称要统一
三.实际应用练习:
我们还可应用到生活中去解决一些实际问题:(幻灯出示)
1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样
的、钢材重多少千克?
默读后问同学:做这道题前有没有准备工作要做?(单位要统一)
2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多
少千克?
默读后问同学:要注意麦堆是什么形状?
请两位同学板演,其余在本子上自练;
3.小结:在解这两题时都用到了什么计算?
四.提高练习:
(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的
圆锥形钢材,水面升高了5厘米,这段钢材高为多少?
(电脑出示图案)观察水面变化情况,求什么?
1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?
2.S可以通过哪个条件求?(r=10厘米)
3.体积是什么呢?(电脑屏幕逐步演示)
(1)当钢材放入时水面上升,取出时水面下降,和什么有关?
(2)放入时水面为什么会上升?
(3)圆锥体占据了水桶里哪一部分水的体积?
(4)上升的水的体积等于什么?
(5)求圆锥形钢材的体积就是求什么?
(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)
(7)板演,同学自练;
五.圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)
1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)
2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;
3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面
积是圆柱底面积的3倍。
六、总结:
这节课我们复习了什么?
《圆锥的体积》教案3
教学目标
1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。
教学重点和难点
圆锥体体积公式的推导。
教学过程设计
(一)复习准备
1.我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。
这是什么体?(圆锥体)
(板书:圆锥)
上节课我们已经认识了圆锥体,这里有几个画好的几何形体。
(出示幻灯)
一起说,几号图形是圆锥体?(2号)
(指着圆锥体的底面)这部分是圆锥体的什么?(底面)
(指着顶点)这呢?
哪是圆锥体的高?(指名回答。)
(用幻灯出示几个图形。)
在这几个圆锥体中,几号线段是圆锥体的高,就举几号卡片。
(学生举卡片反馈)
你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)
那么这个圆锥体的高在哪呢?在幻灯上打出圆锥体的高。)
看来,同学们对于圆锥体的特征掌握得很好,这节课我们就重点研究圆锥的体积。
(板书,在“圆锥"二字的后面写"的体积"。)
(复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的认识。)
(二)学习新课
(老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小?
(再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,
哪个体积小?(引起学生争论,说法不一。)
看来我们只凭眼目青看是不能准福地得出谁的体积大,谁的体积小,必须通过测量计算出它们
的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。
为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比
看,这两个形体有什么相同的地方?
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高"。
(板书:等底等高)
既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用"底面积X高"来求
圆锥体体积行不行?(不行)
为什么?(因为圆锥体的体积小)
(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大
小有什么样的倍数关系?(指名发言)
的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同
学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做
实验的同学不要浪费一粒粮食。
(学生分组做实验。)
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?
(学生发言。)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(不是)
是啊,(老师拿起一个小圆推、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小
圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢?
(因为是等底等高的圆柱体和圆锥体。)
呢?(在等底等高的'情况下。)
(老师在体积公式与“等底等高"四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
今后我们求圆锥体体积就用这种方法来计算。
(老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了
学生的主体作用。)
(三)巩固反馈
1.口答。
填空:
2.板书例题。
例一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?
(指名回答,老师板书。)
=20(cm3)
答:它的体积是20cm3。
3.练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
4.我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积
了。
(幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。
(学生在4燥板上只写结果,举黑板反馈。)
你们求出这个圆锥体的体积是314cm3。现在告诉你们另一个圆柱体的体积我已经计算出
来了,它的体积也是314cm3。这两个形体体积怎样?(一样)刚才我们留下的问题就解决了,看
来判断问题必须要有科学依据。
5.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。
⑴一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是()(dm3)。
②3a(dm3)
③a3(dm3)
(举卡片反馈,订正。)
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆桂体体积是()cm30
(学生举卡片反馈,订正。)
6.刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体
积是多少呢?(不能)
为什么?(因为不知道底面积和高。)
需要测量什么?(底面半径和高。)
怎么测量?(小组讨论。)
(指名发言)
今天回家后,把你们测量的数据写在本子上,再计算出体积。
这节课我们学了什么知识?
出思考题:
现在我们比一比谁的空间想象能力强。
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)
指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,
再比较怎样放体积最大。
(四)指导看书,布置作业
(略)
课堂教学设计说明
本节课的主要特点有以下几点:
一是始终注意激发学生的求知欲。新课一开始就让学生观察,猜测两组圆锥的大小,激发学
习的欲望。在公式推导过程当中又引导学生估计两个等底等高的圆柱和圆锥的体积之间的倍数关
系,使学生的学习兴趣进一步高涨。在应用公式的教学中,又把问题转向了课初学生猜测体积大
小的两个圆锥,并引导学生边测量,边计算,终于使悬念得出了满意的结果,使学生获得了成功
的喜悦。
二是在教学中重视以学生为学习活动的主体,整个公式的推导,是建立在学生分组观察、实
验操作、测量的基础上的,学生不仅参与了获取知识的全过程,更重要的是参与了获取知识的思
维过程。
三是教学层次清楚,步步深入,重点突出。
四是练习有坡度,形式多,教学反馈及时、准确、全面、有效。
板书设计
《圆锥的体积》教案4
教学内容:
冀教版小学数学六年级下册第40~42页。
教学目标:
1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥
的体积。
2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的
过程
3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式
的活动经验。
教学重难点:
教学重点:了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。
教学难点:理解圆锥的高和圆锥体积公式中"Sh”表示的实际意义。
教具学具:
1、等底等高的圆柱和圆锥型容器,一些沙子。
2、多媒体。
教学流程:
一、炫我两分钟
主持学生指名叫学生回答下列问题:
1,圆柱有几个面?各有什么特点?
2.怎样计算圆柱的体积?
学生回答问题。
二、创设情境
1、教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?
2、出示问题情境:
最近老师家准备装修准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?
(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,
我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下
圆锥体积的计算方法。(板书课题)
三、探究新知
尝试小研究一(课前):了解圆锥的特点
1.观察圆锥形的物体或图片,它们有哪些特点?
我的发现:
2.圆锥由1个()面和1个()面2个面组成,圆锥的底面是一个(),圆锥的侧面
是一个()O
3.从圆锥顶点到底面圆心的距离是圆锥的(),用字母()表示。
4.怎样计算圆锥的体积?
我的猜想:()
尝试小研究二(课上):推导圆锥体积的计算公式
1、引导学生借助圆柱,探讨圆锥的体积公式。
①、猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?
②、是怎样推导的呢?你有什么想法?
下面我们就用实验的方法来推导圆椎的体积公式。
老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)都有吗?
2、用实验的方法,推导圆锥的体积公式。
①、引导学生观察用来实验的圆锥、圆柱的特点。
其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?(学
生发现等底等高)(师板书等底等高)
②、学生实验:
你想怎么实验?(小组可以议一议)(老师指导:倒一下)
请大家以小组为单位进行实验,在实验中,注意作好记录,思考三个问题:(大屏幕出示这
三个问题)(学生读一读思考题)
A:你们小组是怎样进行实验的.?
B:通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?
C:根据这个关系怎样求出圆锥的体积?
(教师指导:为了让实验更准照些,可以用尺子将沙子刮平再倒入)
③、学生交流汇报,完成计算公式的推导:
小组汇报,师板书。
圆锥的体积等于和它等底等高的圆柱体积的三分之一。
V=l/3Sh
四、解决问题,巩固练习
(-)运用这个公式解决老师提出的问题,帮助老师解决问题。
1、学生试做。
2、对子同学交流。
3、小组交流。
4、展ZF汇报。
(二)判断:用手势来回答
1、圆柱的体积是圆锥体积的3倍。()
2、一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米()
3、把一个圆柱木块削成一个最大的圆锥,削去的体积是圆柱体积的三分之二。()
(三)完成教材第42页“试一1式”。
五、盘点收获
通过这节课的学习,你有什么收获?你还想了解哪些知识
六、拓展延伸
教材第42页“练一练"第4题。
板书设计:圆锥和圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的三分之一。
圆锥的体积:底面积x高X1/3
V=l/3Sh
5O
《圆锥的体积》教案5
教学内容:
教材第11~17页圆锥的认识和体积计算、例1。
教学要求:
I.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:
长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教
具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:
掌握圆锥的特征。
教学难点:
理解和掌握圆锥体积的计算公式。
教学过程:
一、铺垫孕伏:
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,
我们还常常看到下面一些物体(出建材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。
我们教材中所讲的圆锥,都是直圆推。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
二、自主探究:
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)
提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。(见课本第17页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)
(2)让学生猜想:老师手中的圆席和圆柱等底等高,你能猜想一下它们体积之间有怎样的.关
系?
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒
的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等
底等高的圆柱体体积的。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学
生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积二等底等高的圆柱的体积13二底面积高13
用字母表示:v=13Sh
(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高.求的是什么?为什么要
乘以13?
8.教学例I
(1)出示例1
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
《圆锥的体积》教案6
教学目标:
1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运
用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探
索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,
激发学生参加探索的兴趣。
教学重点:通过实验的方法,得到计算圆锥的体积。
教学难点:运用圆锥的体积公式进行正确地计算。
教学准备:等底等高的圆柱和圆锥容器模型各一个。
教学过程:
一、复习导入
师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么?(指名学生回答)
2、圆锥有什么特征?
同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的.体积同学们知道怎么
求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:
圆锥的体积)
二、探究新知
课件出示等底等高的圆柱和圆锥
1、引导学生观察:这个圆柱和圆锥有什么相同的地方?
学生回答:它们是等底等高的。
猜想:
(1)、你认为圆锥体积的大4与它的什么有关?
(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?
2、学生动手操作实验
(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?
(2)、通过实验,你发现了什么?
小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的
体积是与它等底等高圆柱体积的三分之一.
3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?
(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积:1/3x
圆柱体积)
师:圆柱的体积等于什么?
生:等于"底面积X高”。
师:那么,圆锥的体积可以怎样表示呢?(板书:圆锥的体积:1/3X底面积X高)
师:用字母应该怎样表示?(V=l/3sh)
师:在这个公式里你觉得哪里最应该注意?
三、教学试一试
一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?
四、巩固练习
1、计算圆锥的体积
2、判一判
3、算一算
4、拓展延伸
五、总结
通过这节课的学习,你有什么收获呢?
六、板书:
圆锥的体积二圆柱的体积x1/3
圆锥的体积二底面积x高x1/3
用字母表示V=l/3sh
《圆锥的体积》教案7
教学内容
教科书第40-41页例2,练习九第3~7题。
1.使学生进一步理解并掌握圆锥体积的计算公式,能较熟练地运用圆锥的体积公式解决问
题。
2.在解决问题的过程中,学会思考,增强思维的灵活性,培养学生有序思考的习惯。
3.在探究问题中,发展学生的空间观念。
运用圆锥体积的计算方法解决生活中的问题。
灵活运用圆锥的体积计算公式解决问题。
小黑板
一、复习引入课题
教师:怎样计算圆锥的体积?
学生回答,教师板书体积公式:V=13SH
教师:谁能说说圆锥的体积计算公式是怎么推导出来的?
抽学生简要叙述圆锥的推导过程。
教师:要求圆锥的体积,应该知道哪些条件?
让学生弄清要求圆锥的体积应该知道圆锥的底面积和高。
教师:这节课我们就利用圆锥体积的.计算方法解决生活和学习中常见的数学问题。
板书课题:圆锥的体积二
二、探究新知
1.教学例2
教师用投影仪出示例2。
一煤堆的底面周长18.84M,高1.8M,这个煤堆近似一个圆锥体。准备用载重5吨的车来
运。一次运走这堆煤,需要多少辆车?(1M3煤重1.4吨)
教师要求学生带着问题理解题意。用投影仪出示问题。
(1)这道题讲的是什么事情?知道哪些条件?要求什么问题?
(2)要求这堆煤的质量,必须先求什么?
(3)要求煤的体积应该怎么办?
(4)这题应先求什么?再求什么?最后求什么?
教师鼓励学生独立思考,教师适时点拨。
反馈:要求学生用完整的语言叙述题意。
教师抽学生叙述思考过程,要求语言简洁,思路清晰。
在反馈过程中,尽量多抽几个学生叙述。
通过讨论,使学生明白,这题的关键是求出圆锥形煤堆的体积,也就求出了煤堆的质量。
教师抽学生上台板算。
板书:
煤堆的底面积:3.14x(18.842x3.14)2=3.14x9=28.26(M2)
煤堆的体积:13x28.26xl.8=16.956(M3)
1.4x16.956+5*5(辆)答:……
教师:最后的结果为什么要取整数部分再加1?
让学生明白装了4辆车后,剩下的虽然不够装一车,仍然要用一辆车装,因此要取整数。
教师:在实际生活和学习中,经常会遇到不知道底面积的情况,这时怎样求圆锥的体积?
2.小结
要求圆锥的体积必须知道底面积和高,如果只知道底面半径、底面直径或底面周长和高,要
先算出圆锥的底面积,再利用圆锥的体积公式求出圆锥的体积。学会具体问题具体分析。
三、巩固练习
1.教师用投影仪出示教科书第42页第3题
观察图形,独立解答。抽二生上台板算。
让学生理解此题应先算出圆锥的底面积,才能求出容器的体积。
2.解答教科书第42页第4题
学生独立解答,抽生反馈说出思考过程。
通过这一题的练习,体会圆锥与圆柱之间的关系。
3.解答练习九第6题
学生独立完成,小组交流,展示思考过程,先算什么,再算什么。解答此题的关键是抓住体
积不变进行解答。
4.发展练习
有一个底面周长是31.4DM,高9DM的圆锥形容器里装满了黄豆,现在要把这些黄豆放入
另一个高9DM的圆柱形容器里,刚好装满。这个圆柱形容器的底面直径有多大?
教师引导学生读题,理解题意。
弄清已知条件和问题,根据条件寻找中间问题。明白先算什么,再算什么。
学生小组内交流,探讨解决方案。
反馈:学生用完整清晰的语言叙述解题思路。
弄清解决这题的关键是抓住黄豆的体积不变,即圆柱和圆锥的体积相等。这是解答此题的突
破口。教科书练习九第5题,第7题。教师:今天这节课我们学了什么知识?通过这节课的学
习,对圆锥的体积计算更熟悉了。知道圆锥和圆柱的知识与我们的生活息息相关,在解决实际问
题时,应有序思考,灵;舌运用知识。
例2……
煤堆的底面积:3.14x(18.842x3.14)2=3.14x9=28.26(M2)
煤堆的体积:13x28.26xl.8=16.956(M3)
1.4x16.956+5*5(辆)答:
《圆锥的体积》教案8
教学目标:
1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体
的体积公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力不解索意识。
教学重点:通过实验的方法,得到计算圆锥体积的公式。
教学难点:运用圆锥体积公式正确地计算体积。
教学过程:
一、创设情境,引发猜想
在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个II锥形的雪糕,这两个雪
糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两
个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想
法与小组的同学交流一下,再向全班同学汇报。
小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
二、自主探索,操作实验
1、出示学习提纲
(1)利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么
关系?
(2)你们小组是怎样进行实验的?
(3)你能根据实验结果说出圆锥体的体积公式吗?
(4)要求圆锥体积需要知道哪两个条件?
2、小组合作学习
3、回报交流
结论:圆锥的体积是等底等高的圆柱体积的1/3。
公式:V=l/3Sh
4、问题解决
小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?
5、运用公式解决问题
教学例题1和例题2
三、巩固练习
1、圆锥的底面积是5,高是3,体积是()
2、圆锥的底面积是10,高是9,体积是()
3、求下面各圆锥的.体积.
(1)底面面积是7.8平方米,高是1.8米.
(2)底面半径是4厘米,高是21厘米.
(3)底面直径是6分米,高是6分米.
4、判断对错,并说明理由.
(1)圆柱的体积相当于圆锥体积的3倍.()
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:
1.()
(3L个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.()
四、拓展延伸
一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?
五、谈谈收获
六、作业
《圆锥的体积》教案9
学情分析
美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习
的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是
学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,
因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,
肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是
他们不易发现隐藏在实验中的等底等高的这一熟牛,这是实验过程中的一个盲点。为凸现这一条
件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层
层逼近的过程,进行深度信息加工。
教学过程
一、复习旧知,铺垫孕伏
1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?
2.复习高的概念。
(1)什么叫圆锥的高?
(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,
帮助学生进行操作)
圆锥特征的复习简明扼要。圆锥高的复习颇具新意通过动手操作从而使抽象的高具体化、
形象化。
二、创设情境,引发猜想
1.电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮
专柜熊伯伯那>1映了T圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专
柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑
了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2.引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟彳加奂一个,怎么样?(如果这时小白兔
和狐狸换了雪糕,你觉得小白兔有没有上当?)
问题二:(动画演示)狐狸手上又多了一个同样大小的'圆锥形雪糕,(小白兔这时和狐狸
换雪糕,你觉得公平吗?)
问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把
你的想法与小组同学交流一下,再向全班同学汇报)
过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问
题。
数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的
童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公
平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想他们在这一情境中敢猜想、要猜想、
乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了
学生进一步探究的强烈欲望。
三、自主探索,操作实验
下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的
关系,解决电脑博士给我们提出的问题。
出示思考题:
(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2)你们的小组是怎样进行实验的?
1.小组实验。
《圆锥的体积》教案10
教学内容:教材第16~19页圆锥的认识和体积计算、例L
教学要求:
I.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、
等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:
一、铺垫孕伏:
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,
我们还常常看到下面一些物体(出建材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。
我们教材中所讲的圆锥,都是直圆推。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
二、自主探究:
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
Q)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)
提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习三第1题。
5.教学圆推高的测量方法。(见课本第17页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
Q)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)
(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关
系?
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒
的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的.关系?得出圆锥的体积是与它等
底等高的圆柱体体积的。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学
生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积二等底等高的圆柱的体积二底面积高
用字母表示:V=Sh
(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高.求的是什么?为什么要
乘以?
8.教学例I
(1)出示例1
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、巩固练习
1.做练习三第2题。
学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。
2.做练习三第4题。学生书面练习,小组交流,集体订正。
四、课堂小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
五、课堂作业
练习三第3题及数训。
六、板书:
圆锥
圆锥的特征:底面是圆,
侧面是一个曲面,展开是一个扇形。
它有一个顶点和一条高。
圆柱的体积二底面积高
圆锥的体积:圆柱体积
圆锥的体积:底面积高V=Sh
《圆锥的体积》教案11
教学要求:
I.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆推高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第14页练一练第1题自制的圆锥,演示
测高、等底、等高的教具
演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:
一、复习引新
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,
我们还常常看到下面一些物体(出趣材第13页插图)。
这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,
就学习圆锥和圆锥的体积。(板书课题)
二、教学新课
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)
提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
5.教学圆锥高的测量方法。(见课本第13页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的.图)
(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关
系?
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒
的次数看
你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高
的圆柱体体积的。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学
生通过观察实验
得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积二等底等高的圆柱的体积
二底面积高
用字母表示:V=Sh
(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高.求的是什么?为什么要
乘以?
8.教学例I
⑴出示例1
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、巩固练习
1.做练一练第2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以.
2.做练习三第2题。
学生做在课本上。〃螺板出示,指名口答,老师板书。错的要求说明理由。
3.做练习三第3题。
让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想
的。
四、课堂小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
五、课堂作业
练习三第4、5题。
《圆锥的体积》教案12
1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出
来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥
与圆柱体积之间的关系,教师预设学生可能粗略地知道有"三分之一”这一关系,"那么三分之
一这一关系怎样推导呢"引起以下怎样推导圆锥的体积这一过程。
(2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进
行实验,让学生更有目的性,也^常方便,有操作性。
(3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。
(4)公式推导完之后的一个反例子(出示一个非常大的圆柱和fF常小的圆锥),让学
生明确并不是所有的‘圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。
2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上
的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直
径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要
考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。
3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体
积公式的推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管
大小,只要等底等高就有3倍这样的关系。
4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没
花多的时间,由于数字教大,部分学生没做完。
《圆锥的体积》教案13
圆锥的体积教学目的:使同学初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥
的体积,发展同学的空间观念。
学具准备:等底等高的圆柱和圆锥8组,比圆柱体积多的沙土
教学过程:
一、复习
L圆锥有什么特征?
使同学进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名同学回答,并板书公式:"圆柱的体积二底面积X高"。同时渗透转化方法在数学学习
中的应用。
二、导人新课
我们已经学过圆柱体积的计算公式,那么圆锥的体积是不是和圆柱体积有关呢?今天我们就
来学习圆锥体积的计算。
板书课题:圆推的.体积
三、新课
1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名同学叙述圆柱体积计算公式的推导过程,使同学明确求圆柱的体积是通过切拼生长方体
来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
先让同学讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积
的公式。
教师拿出等底等高的圆柱和圆推各一个,"大家看,这个圆锥和圆柱有什么一起的地方?”
然后通过演示后,指出:"这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之
间的体积有什么关系?”
同学分组实验。
汇报实验结果。先在圆锥里装满沙土,然后倒入圆柱。正好3次可以倒满。
多指名说
接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒
几次正好把圆柱装满?
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3x圆注体积
师:圆柱的体积等于什么?
生:等于"底面积x高"。
师:那么,圆锥的体积可以怎样表示呢?
引导同学想到可以用"底面积x高"来替换"圆柱的体积",于是可以得到圆锥体积的计算
公式。
板书:圆锥的体积:1/3X底面积X高
师:用字母应该怎样表示?
然后板书字母公式:v=1/3SH
师:在这个公式里你觉得哪里最应该注意?
2、巩固练习
(1)已知圆柱和圆锥等底等高。圆柱的体积是45立方厘米,圆锥的体积是()立方厘米。
已知圆柱和圆锥等底等高。圆锥的体积是20立方厘米,圆柱的体积是()立方厘米。
(2)求下面圆锥的体积。
已知底面面积是9.6平方米,高是2米。
底面半径是4厘米,高是3.5厘米。
底面直径是4厘米,高是6厘米。
在列式时注意什么?()在计算时,我们怎样计算比较简便?(能约分的要先约分)
(3)判断:
(I)圆锥体积是圆柱体积的1/3()
(2)圆柱体的体积大于与它等底等高的圆锥体的体积。()
(3)假如圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。()
(4)圆锥的底面积是3平方厘米,体积是6立方厘米。()
《圆锥的体积》教案14
本节课属于空间与图形知识的教学,是〃浮阶段几何知识的重难点部分,是4浮学习立体图
形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理
解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025服装辅料采购合同
- 屋顶电竞比赛场地租赁合同
- 2025年度委托反担保合同样本:旅游项目投资合作3篇
- 临时员工培训用车协议
- 油田注水泵房改造项目合同
- 2025养殖场兽医的聘用合同
- 二零二五年度绿色建筑项目专用PE排水管及配件销售合同2篇
- 环境监测科技合同管理办法
- 广州市二手房赠与合同一
- 高端家庭助理合同范本
- 菏泽2024年山东菏泽市中心血站招聘15人笔试历年典型考点(频考版试卷)附带答案详解版
- 供热通风与空调工程施工企业生产安全事故隐患排查治理体系实施指南
- 精-品解析:广东省深圳市罗湖区2023-2024学年高一上学期期末考试化学试题(解析版)
- 记账实操-基金管理公司的会计处理分录示例
- 中国慢性便秘诊治指南
- 沐足行业严禁黄赌毒承诺书
- 2025年蛇年红色喜庆中国风春节传统节日介绍
- 河北省承德市2023-2024学年高一上学期期末物理试卷(含答案)
- 山西省2024年中考物理试题(含答案)
- 危险化学品目录2023
- FZ/T 81024-2022机织披风
评论
0/150
提交评论