福建省南平市小湖中学2022年高二数学理期末试题含解析_第1页
福建省南平市小湖中学2022年高二数学理期末试题含解析_第2页
福建省南平市小湖中学2022年高二数学理期末试题含解析_第3页
福建省南平市小湖中学2022年高二数学理期末试题含解析_第4页
福建省南平市小湖中学2022年高二数学理期末试题含解析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省南平市小湖中学2022年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“m⊥β”是“α⊥β”的(

)A.充分不必要条件

B.必要不充分条件

C.充要条件D.既不充分也不必要条件参考答案:A2.下列各式中,最小值等于2的是(

)A. B. C. D.参考答案:D解:选项A,中当x,y同号时,满足题意,选项B,取不到等号,选项C,正切值符号不定,因此只能选择D,一正二定三相等。这是均值不等式使用的注意点。

3.中心在原点的双曲线,一个焦点为,一个焦点到最近顶点的距离是,则双曲线的方程是()A.

B.

C.

D.参考答案:A4.已知等比数列{an}的公比为正数,且a3?a9=2a52,a2=1,则a1=(

)A. B. C. D.2参考答案:B【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】设等比数列的公比为q,根据等比数列的通项公式把a3?a9=2a25化简得到关于q的方程,由此数列的公比为正数求出q的值,然后根据等比数列的性质,由等比q的值和a2=1即可求出a1的值.【解答】解:设公比为q,由已知得a1q2?a1q8=2(a1q4)2,即q2=2,又因为等比数列{an}的公比为正数,所以q=,故a1=.故选B.【点评】此题考查学生灵活运用等比数列的性质及等比数列的通项公式化简求值,是一道中档题.5.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是(

)A.(0,) B.(,1) C.(1,2) D.(2,+∞)参考答案:B【考点】函数的零点.【专题】函数的性质及应用.【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:KOA=,数形结合可得<k<1,故选:B.【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.6.设,若,则=(

)A.

B.1 C. D.参考答案:B略7.已知向量,,若,则(

)A. B. C. D.3参考答案:B【分析】根据向量,求得,再利用三角函数的基本关系化简,即可求解.【详解】由题意,向量,,因为,所以,即,即,则,故选B.【点睛】本题主要考查了向量的共线定理的应用,以及三角函数的基本关系式的应用,其中解答中根据向量的共线定理得到的值,再利用三角函数的基本关系式化简、求值是解答的关键,着重考查了运算与求解能力,属于基础题.8.已知的右焦点F2恰好为y2=4x的焦点,A是两曲线的交点,|AF2|=,那么椭圆的方程是(

)A.

B.

C.

D.参考答案:A9.已知实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m等于(

)A.7 B.5 C.4 D.3参考答案:B【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数z=x﹣y的最小值是﹣1,确定m的取值.【解答】解:作出不等式组对应的平面区域如图:由目标函数z=x﹣y的最小值是﹣1,得y=x﹣z,即当z=﹣1时,函数为y=x+1,此时对应的平面区域在直线y=x+1的下方,由,解得,即A(2,3),同时A也在直线x+y=m上,即m=2+3=5,故选:B【点评】本题主要考查线性规划的应用,根据条件求出m的值是解决本题的关键,利用数形结合是解决此类问题的基本方法.10.若实数x,y满足,则目标函数的最大值为A.18

B.17

C.16

D.15参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知表示两个不同的平面,是一条直线,且,则“”是“”的

条件(填:充分条件、必要条件、充要条件、既不充分也不必要条件)参考答案:充分不必要条件12.直线y=2x关于x轴对称的直线方程是_______________.参考答案:略13.抛物线y=x2–4x–a2+4a(0<a≤2)和x轴交于A、B两点,动圆M过点A、B且和y轴切于点C,O是原点,则|OC|的取值范围是

。参考答案:(0,2]14.在等腰直角三角形中,是斜边的中点,如果的长为,则的值为

;参考答案:415.若函数f(x)=﹣x3+x2+2ax在[,+∞)上存在单调递增区间,则a的取值范围是.参考答案:【考点】6B:利用导数研究函数的单调性.【分析】求出函数的导数,利用导函数值大于0,转化为a的表达式,求出最值即可得到a的范围.【解答】解:函数f(x)=﹣x3+x2+2ax,f′(x)=﹣x2+x+2a=﹣(x﹣)2++2a.当x∈[,+∞)时,f′(x)的最大值为f′()=2a+,令2a+>0,解得a,所以a的取值范围是.故答案为:.16.已知焦点在x轴上的双曲线的渐近线方程为,则双曲线的离心率为____.参考答案:【分析】焦点在轴上的双曲线的渐近线方程为,可知,由此可求出双曲线的离心率。【详解】由题可设焦点在轴上的双曲线方程为,由于该双曲线的渐近线方程为,则,在双曲线中,所以双曲线的离心率,故双曲线的离心率为。【点睛】本题考查双曲线的离心率的求法,双曲线渐近方程的应用,属于基础题。17.若复数z满足z(1+i)=1-i(i是虚数单位),则其共轭复数=.参考答案:i略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数,若曲线在点处的切线与y轴垂直。(1)求a的值;(2)求函数f(x)的极大值和极小值.参考答案:(1);(2),【分析】(1)利用导数的几何意义可得切线的斜率,利用切线与轴垂直可得a;(2)令0,解得或,列出表格,即可得出函数的单调性极值.【详解】(1),由题可知,,即,解得.(2)由(1)知,因此,,

解得或列表:当时,;当时,.【点睛】本题考查了导数的几何意义、切线方程、利用导数研究函数的单调性极值,考查了推理能力和计算能力,属于中档题.19.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若?p是?q的充分不必要条件,求实数a的取值范围.参考答案:【考点】复合命题的真假;必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】(1)现将a=1代入命题p,然后解出p和q,又p∧q为真,所以p真且q真,求解实数a的取值范围;(2)先由¬p是¬q的充分不必要条件得到q是p的充分不必要条件,然后化简命题,求解实数a的范围.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]【点评】充要条件要抓住“大能推小,小不能推大”规律去推导.20.设正项数列的前项和是,若都是等差数列,且公差相等,求的通项公式;(2)若恰为等比数列的前三项,记数列的前n项和为,求证:对任意参考答案:(1)设的公差为,则,且又,所以,,(2)易知,

∴。当时,∴当时,+,且故对任意,.略21.已知函数(是自然对数的底数,为常数).(1)若函数,在区间[1,+∞)上单调递减,求的取值范围.(2)当时,判断函数在(0,1)上是否有零点,并说明理由.参考答案:见解析.解:()由得,∴,即,∴,∴,;∴,∴在上单调递减,又在上单调递减;∴,∴,即实数的取值范围是.()假设函数在区间上有零点,即存在,使得,即,记.①若,则,即,由于,有,即证在上恒成立,令,,则,,当时,,当时,,∴当时,单调递减,当时,单调递增.而,,,∴在上存在唯一的实数,使得,∴在上单调递增,在上单调递减,而,,∴在上恒成立,即恒成立,②若,则,即,由于,有,即证在恒成立,令,则,,当,,单调递减;当,,单调递增,而,,∴在上存在唯一的实数,使得,∴在上单调递减,在上单调递增,又,,故在上成立,即成立,综上所述,当时,函数在区间上有零点.22.(12分)在数列{an}中,已知a1=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论