版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市八年级上学期期中考试数学试题A卷(共100分)一、选择题(每小题3分,共30分)1.下列实数中,是有理数的为()A. B. C.π D.02.若5+与5﹣的整数部分分别为x,y,则x+y的立方根是()A. B.± C.3 D.±3.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥24.下列一组数是勾股数的是()A.6,7,8 B.5,12,13 C.0.3,0.4,0.5 D.10,15,185.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3) B.(3,2) C.(0,3) D.(1,3)6.根据下列表述,能确定位置的是() A.国际影城3排 B.A市南京路口C.北偏东60°D.东经100°,北纬30°7.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=﹣1的解为()A.x=0 B.x=1 C.x= D.x=﹣28.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2 B.4cm2 C.6cm2 D.12cm29.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为()A.(﹣3,4) B.(﹣3,﹣4) C.(3,4) D.(3,﹣4)10.函数y=kx﹣k(k<0)的大致图象是()A. B. C. D.二、填空题(每题4分,共16分)11.的平方根是.12.计算:(+)=.13.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.14.若y=(a+3)x+a2﹣9是正比例函数,则a=.三、解答下列各题(本题满分54分.15题每小题6分;16题6分;17题8分;18题10分(每小题5分);19题8分;20题10分.)15.(本小题满分12分,每题6分)(1)计算:+(2﹣)0﹣(﹣)﹣2+|﹣1|(2)计算:2•(3﹣4﹣3)16.(本小题满分6分)已知:2m+2的平方根是±4;3m+n的立方根是﹣1,求:2m﹣n的算术平方根.17.(本小题满分8分)一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?18.(本小题满分10分,每小题各5分)(1)如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.(2)在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3).求这个一次函数解析式并求m的值.19.(本小题满分8分)如图,△ABC在平面直角坐标系中:(1)画出△ABC关于y轴对称的△DEF(其中D、E、F是A、B、C的对应点)(2)写出D、E、F的坐标;(3)求出△DEF的面积.20.(本小题满分10分)某移动公司有两类收费标准:A类收费是不管通话时间多长,每部手机每月须缴月租12元.另外,通话费按0.2元/min;B类收费是没有月租,但通话费按0.25元/min. (1)请分别写出每月应缴费用y(元)与通话时间x(min)之间的关系式; (2)若小芳爸爸每月通话时间为300min,请说明选择哪种收费方式更合算; (3)每月通话多长时间,按A、B两类收费标准缴费,所缴话费相等. B卷(共50分)一.填空题:(每小题4分,共20分)21.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=.22.若+(y+1)4=0,则xy=.23.已知直线a平行于y轴,且直线a上任意一点的横坐标都是3,直线b平行于x轴,且直线b与x轴的距离为2,直线a与b交点为P,则点P的坐标为. 24.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为. 25.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2019=.二、(本题共8分) 26.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)品牌进价(无/件)售价(元/件)A5080B4065三、(本题共10分)27.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2﹣8a+1的值.四、(本题共12分)28.如图,直线l1:y=﹣x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,﹣1),与x轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.(1)求直线l2的函数关系式;(2)点P是l2上的一点,若△ABP的面积等于△ABD的面积的2倍,求点P的坐标;(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列实数中,是有理数的为()A. B. C.π D.0【考点】实数.【分析】根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.【解答】解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.2.若5+与5﹣的整数部分分别为x,y,则x+y的立方根是()A. B.± C.3 D.±【考点】估算无理数的大小.【分析】先估算出的大小,然后可求得x,y的值,然后再求得x+y的值,最后再求它们的立方根.【解答】解:∵9<11<16,∴3<<4.∴5+与5﹣的整数部分分别为8和1,∴x+y=9.∴x+y的立方根是.故选:A.3.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数,即可求解.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.4.下列一组数是勾股数的是()A.6,7,8 B.5,12,13 C.0.3,0.4,0.5 D.10,15,18【考点】勾股数.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、∵62+72≠82,∴此选项不符合题意;B、∵52+122=132,∴此选项符合题意;C、∵0.32+0.42=0.52,但不是正整数,∴此选项不符合题意;D、∵102+152≠182,∴此选项不符合题意.故选:B.5.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3) B.(3,2) C.(0,3) D.(1,3)【考点】坐标确定位置.【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.6.根据下列表述,能确定位置的是() A.国际影城3排 B.A市南京路口 C.北偏东60° D.东经100°,北纬30° 【考点】坐标确定位置. 【分析】根据位置的确定需要两个条件对各选项分析判断即可得解. 【解答】解:A、国际影城3排,具体位置不能确定,故本选项错误; B、A市南京路口,具体位置不能确定,故本选项错误; C、北偏东60°,具体位置不能确定,故本选项错误; D、东经100°,北纬30°,位置很明确,能确定位置,故本选项正确. 故选D. 【点评】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键. 7.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=﹣1的解为()A.x=0 B.x=1 C.x= D.x=﹣2【考点】一次函数与一元一次方程.【分析】根据图象可知,一次函数y=kx+b的图象过点(,﹣1),即当x=时,y=﹣1,由此得出关于x的方程kx+b=﹣1的解.【解答】解:∵一次函数y=kx+b的图象过点(,﹣1),∴关于x的方程kx+b=﹣1的解是x=.故选C.8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2 B.4cm2 C.6cm2 D.12cm2【考点】勾股定理;翻折变换(折叠问题).【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.9.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为()A.(﹣3,4) B.(﹣3,﹣4) C.(3,4) D.(3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出M1,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.【解答】解:∵点M(3,﹣4)关于y的轴的对称点是M1,∴M1的坐标为(﹣3,﹣4),∴M1关于x轴的对称点M2的坐标为(﹣3,4).故选A.10.函数y=kx﹣k(k<0)的图象是()A. B. C. D.【考点】一次函数的图象.【分析】一次函数y=kx﹣k(常数k<0)的图象一定经过第二、一、四象限,不经过第四象限.【解答】解:因为k<0,所以﹣k>0,所以可很一次函数y=kx﹣k(常数k<0)的图象一定经过第二、一、四象限,故选A二、填空题(每题4分,共16分)11.的平方根是±.【考点】立方根;平方根.【分析】根据立方根的定义求出,然后利用平方根的定义求出结果.【解答】解:∵=22的平方根是±.∴的平方根是±.故答案为:±.12.计算:(+)=12.【考点】二次根式的混合运算.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.13.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】长方体内体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,这样就是求出盒子的对角线长度即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm. 故答案为5cm.14.若y=(a+3)x+a2﹣9是正比例函数,则a=3.【考点】正比例函数的定义.【分析】根据正比例函数的定义,可得方程,根据解方程,可得答案.【解答】解:由y=(a+3)x+a2﹣9是正比例函数,得a2﹣9=0且a+3≠0.解得a=3,故答案为:3.三、解答下列各题(本题满分54分.15题每小题6分;16题6分;17题8分;18题10分(每小题5分);19题8分;20题10分.)15.(本小题满分12分,每题6分)(1)计算:+(2﹣)0﹣(﹣)﹣2+|﹣1|(2)计算:2•(3﹣4﹣3)【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)首先化简二次根式,计算0次幂、负指数次幂、去掉绝对值符号,然后进行加减即可;(2)首先化简二次根式,然后利用单项式与多项式的乘法法则计算即可.【解答】解:(1)原式=4+1﹣4+1=2;(2)原式=4•(12﹣﹣9)=4(3﹣)=36﹣4.16.(本小题满分6分)已知:2m+2的平方根是±4;3m+n的立方根是﹣1,求:2m﹣n的算术平方根.【考点】立方根;平方根;算术平方根.【分析】依据平方根和立方根的定义得到关于m和n的方程,然后再求得代数式2m﹣n的值,最后在求得2m﹣n的算术平方根即可.【解答】解:因为2m+2的平方根是±4所以2m+2=(±4)2,解得:m=7.因为3m+n的立方根是﹣1所以3m+n=(﹣1)3,解得:n=﹣22.所以===6.所以2m﹣n的算术平方根是6.17.(本小题满分8分)一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?【考点】勾股定理的应用.【分析】应用勾股定理求出AC的高度,以及B′C的距离即可解答.【解答】解:(1)由题意,得AB2=AC2+BC2,得AC===24(米).(2)由A′B′2=A′C2+CB′2,得B′C====15(米).∴BB′=B′C﹣BC=15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.18.(本小题满分10分,每小题各5分)(1)如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.【考点】勾股定理.【分析】首先,在直角△ABO中,利用勾股定理求得AO=5cm;然后在直角△AFO中,由勾股定理求得斜边FO的长度;最后根据圆形的面积公式进行解答.【解答】解:如图,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,∴AO==5cm.则在直角△AFO中,由勾股定理得到:FO==13cm,∴图中半圆的面积=π×()2=π×=(cm2).答:图中半圆的面积是cm2.(2)在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3).求这个一次函数解析式并求m的值.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】将两个已知点A(2,0),B(0,2)分别代入y=kx+b,分别求出k、b的解析式,再将未知点C(m,3)代入一次函数解析式,求出m的值.【解答】解:由已知条件,得,解得.∴一次函数解析式为y=﹣x+2,∵一次函数y=﹣x+2过C(m,3)点,∴3=﹣m+2,∴m=﹣1.19.(本小题满分8分)如图,△ABC在平面直角坐标系中:(1)画出△ABC关于y轴对称的△DEF(其中D、E、F是A、B、C的对应点)(2)写出D、E、F的坐标;(3)求出△DEF的面积.【考点】作图﹣轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出各对应点位置;(2)利用所画图形得出各点坐标;(3)利用△DEF所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△DEF即为所求;(2)D(﹣2,2),E(2,﹣1),F(﹣3,﹣2);(3)△DEF的面积为:4×5﹣×1×4﹣×3×4﹣×1×5=9.5.(本小题满分10分)某移动公司有两类收费标准:A类收费是不管通话时间多长,每部手机每月须缴月租12元.另外,通话费按0.2元/min;B类收费是没有月租,但通话费按0.25元/min. (1)请分别写出每月应缴费用y(元)与通话时间x(min)之间的关系式; (2)若小芳爸爸每月通话时间为300min,请说明选择哪种收费方式更合算; (3)每月通话多长时间,按A、B两类收费标准缴费,所缴话费相等. 【考点】一次函数的应用. 【分析】(1)对于A类收费:0.2x加上月租12元;对于B类收费:0.25x; (2)把x=300代入(1)中两解析式中计算对应的函数值,然后比较函数值的大小即可;(3)令两函数值相等得到方程12+0.2x=0.25x,然后解方程求出x即可. 【解答】解:(1)yA=12+0.2x;yB=0.25x; (2)当x=300时,yA=12+0.2x=12+300×0.2=72(元);yB=0.25x=0.25×300=75(元), 所以选择A类收费方式更合算; (3)解方程12+0.2x=0.25x得x=240(分), 所以每月通话240分钟,按A、B两类收费标准缴费,所缴话费相等. 【点评】本题考查了一次函数的应用:利用通话费用等于通话时间乘以通话单价列函数关系式.B卷(共50分)一.填空题:(每小题4分,共20分)21.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=﹣2a+c.【考点】二次根式的性质与化简.【分析】直接利用数轴得出a+b﹣c<0,b﹣a>0,进而化简即可.【解答】解:由数轴可得:a+b﹣c<0,b﹣a>0,故:|a+b﹣c|+=﹣(a+b﹣c)+b﹣a=﹣2a+c.故答案为:﹣2a+c.22.若+(y+1)4=0,则xy=.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先由非负数的性质得出x、y的数值,进一步代入求得答案即可【解答】解:根据题意得x﹣3=0且y+1=0,解得x=3,y=﹣1.则原式=3﹣1=.故答案是:.23.已知直线a平行于y轴,且直线a上任意一点的横坐标都是3,直线b平行于x轴,且直线b与x轴的距离为2,直线a与b交点为P,则点P的坐标为(3,2)或(3,﹣2).【考点】两条直线相交或平行问题.【分析】根据直线a平行于y轴,且直线a上任意一点的横坐标都是3,可得交点横坐标为3;直线b平行于x轴,且直线b与x轴的距离为2,可得交点的纵坐标为2或﹣2,由此可得交点坐标.【解答】解:∵直线a平行于y轴,且直线a上任意一点的横坐标都是3,∴交点P横坐标为3;∵直线b平行于x轴,且直线b与x轴的距离为2,∴交点P的纵坐标为2或﹣2;∴交点P的坐标为(3,2)或(3,﹣2).故答案为:(3,2)或(3,﹣2).24.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为3.【考点】勾股定理的逆定理.【分析】在Rt△AOB、Rt△DOC中分别表示出AO2、DO2,从而在Rt△ADO中利用勾股定理即可得出AD的长度.【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故答案为:3.25.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2019=.【考点】勾股定理.【分析】首先根据勾股定理求出OP4,再由OP1,OP2,OP3的长度找到规律进而求出OP2019的长.【解答】解:由勾股定理得:OP4==,∵OP1=;得OP2=;依此类推可得OPn=,∴OP2019=故答案为:二、(本题共8分) 26.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)品牌进价(无/件)售价(元/件)A5080B4065【考点】一次函数的应用.【分析】(1)根据题意和表格中的数据可以得到W关于x的函数关系式;(2)根据表格中的数据可以求得购进两种T恤的件数,然后根据(1)中函数关系式即可求得超市所获利润.【解答】解:(1)由题意可得,W=(80﹣50)x+(65﹣40)=5x+5000,即W关于x的函数关系式W=5x+5000;(2)由题意可得,50x+×40=9500,解得,x=150,∴W=5×150+5000=5750(元),即超市所获利润为5750元.三、(本题共10分)27.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度养老院门卫及老年人安全保障服务合同4篇
- 2025年度区块链技术应用公司并购合同4篇
- 2025年度苗木种植与林业产业发展合作合同4篇
- 2025年度通信工程保险合同
- 2025年度药品研发合作中的保密条款与竞业禁止合同
- 2025年度电焊工技能提升劳动合同协议书二零二五
- 二零二五年度智能制造股份转让合同
- 2025年度特种环境配电箱研发与批量供货合同
- 二零二五年度外卖配送配送员健康保险合同样本
- 2025年度门面房出租收益权转让合同
- 《健康体检知识》课件
- 生产计划主管述职报告
- 名表买卖合同协议书
- JTG-T-F20-2015公路路面基层施工技术细则
- 2024年辽宁石化职业技术学院单招职业适应性测试题库附答案
- 中西方校服文化差异研究
- 《子宫肉瘤》课件
- 《准妈妈衣食住行》课件
- 给男友的道歉信10000字(十二篇)
- 客人在酒店受伤免责承诺书范本
- 练字本方格模板
评论
0/150
提交评论