




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE1-空间几何体的结构及其三视图和直观图课时作业1.给出下列命题:①各侧面都是全等四边形的棱柱肯定是正棱柱;②对角面是全等矩形的六面体肯定是长方体;③长方体肯定是正四棱柱.其中正确的命题个数是()A.0 B.1C.2 D.3答案A解析①底面是菱形的直平行六面体,满意条件但不是正棱柱;②底面是等腰梯形的直棱柱,满意条件但不是长方体;③明显错误.2.(2024·河北唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为()答案A解析由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.3.如图,直观图所表示的平面图形是()A.正三角形 B.锐角三角形C.钝角三角形 D.直角三角形答案D解析由直观图中,A′C′∥y′轴,B′C′∥x′轴,还原后如图AC∥y轴,BC∥x轴.所以△ABC是直角三角形.故选D.4.(2024·宁德质检)如图是正方体截去阴影部分所得的几何体,则该几何体的侧视图是()答案C解析该几何体的侧视图是从左边向右边看.故选C.5.如图所示,从三棱台A′B′C′-ABC中截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台答案B解析剩余部分是四棱锥A′-BB′C′C,选B.6.(2024·湖南长沙模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-BCD的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()答案A解析正视图和俯视图中棱AD和BD均看不见,为虚线,故选A.7.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图肯定不行能是()答案D解析几何体的正视图和侧视图完全相同,则该几何体从正面看和从侧面看的长度相等,只有等边三角形不行能.故选D.8.(2024·临沂模拟)如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF,如图乙,则该几何体的正(主)视图是()答案C解析由于三棱柱为正三棱柱,故侧面ADEB⊥底面DEF,△DEF是等边三角形,所以CD在面ABED上的投影为AB的中点与D的连线,CD的投影与底面DEF不垂直.故选C.9.(2024·河北石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()答案D解析由图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.故选D.10.(2024·湖北武汉模拟)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和② B.③和①C.④和③ D.④和②答案D解析在空间直角坐标系中构建棱长为2的正方体,设A(0,0,2),B(2,2,0),C(1,2,1),D(2,2,2),则空间几何体ABCD即为满意条件的四面体,得出其正视图和俯视图分别为④和②,故选D.11.(2024·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2eq\r(17) B.2eq\r(5)C.3 D.2答案B解析依据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽、圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为eq\r(42+22)=2eq\r(5),故选B.12.某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.6答案B解析由多面体的三视图还原直观图如图所示.该几何体由上方的三棱锥A-BCE和下方的三棱柱BCE-B1C1A1构成,其中侧面CC1A1A和侧面BB1A1A是梯形,则梯形的面积之和为2×eq\f((2+4)×213.(2024·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形态多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形态是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的全部顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26eq\r(2)-1解析先求面数,有如下两种解法.解法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26个面.解法二:一般地,对于凸多面体顶点数(V)+面数(F)-棱数(E)=2.(欧拉公式)由题图知,棱数为48的半正多面体的顶点数为24.故由V+F-E=2,得面数F=2+E-V=2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH,如图,设其边长为x,则正八边形的边长即为棱长.连接AF,过H,G分别作HM⊥AF,GN⊥AF,垂足分别为M,N,则AM=MH=NG=NF=eq\f(\r(2),2)x.又AM+MN+NF=1,∴eq\f(\r(2),2)x+x+eq\f(\r(2),2)x=1.∴x=eq\r(2)-1,即半正多面体的棱长为eq\r(2)-1.14.现有编号为①,②,③的三个三棱锥(底面水平放置),其俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面相互垂直的三棱锥的全部编号是________.答案①②解析编号为①的三棱锥,其直观图可能是图①,侧棱VC⊥底面ABC,则侧面VAC⊥底面ABC,满意题意;编号为②的三棱锥,其直观图可能是图②,侧面PBC⊥底面ABC,满意题意;编号为③的三棱锥,顶点的投影不在底面边上(如图③),不存在侧面与底面垂直.故答案为①②.15.已知某几何体的俯视图是如图所示的矩形,正(主)视图是一个底边长为8,高为4的等腰三角形,侧(左)视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.解由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.(1)V=eq\f(1,3)×(8×6)×4=64.(2)四棱锥的两个侧面VAD,VBC是全等的等腰三角形,取BC的中点E,连接OE,VE,则△VOE为直角三角形,VE为△VBC的边BC上的高,VE=eq\r(VO2+OE2)=4eq\r(2).同理侧面VAB,VCD也是全等的等腰三角形,AB边上的高h=eq\r(42+\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,2)))2)=5.所以S侧=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)×6×4\r(2)+\f(1,2)×8×5))=40+24eq\r(2).16.若已知△ABC的直观图△A′B′C′是边长为a的正三角形,求原△ABC的面积.解如图所示是△ABC的直观图△A′B′C′.作C′D′∥y′轴交x′轴于点D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2×eq\r(2)×C′O′=2eq\r(2)·eq\f(\r(3),2)a=eq\r(6)a.而AB=A′B′=a,∴S△ABC=eq\f(1,2)a·eq\r(6)a=eq\f(\r(6),2)a2.17.(2024·合肥模拟)一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为eq\r(3)、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为eq\r(3).所以V=1×1×eq\r(3)=eq\r(3).(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高端生物医药研究员全职聘用与研发成果转化优先权合同
- 知乎盐选专栏内容版权合作与数字图书馆引进协议
- 轨道交通技术合作补充协议
- 建筑电线电缆采购及敷设质量监控服务合同
- 影视拍摄移动摇臂租赁及远程操控服务合同
- 微信小程序电商代运营及客户关系维护协议
- 社会化管理协议书
- 建立大党委协议书
- 好兄弟合同范本
- 影视外景地消毒卫生管理补充协议
- 【许林芳老师】-《企业文化构建与落地》
- CJT 244-2016 游泳池水质标准
- 天津市部分区2023-2024学年八年级下学期期末练习道德与法治试卷
- 2024年年1一4季度思想汇报7篇
- 光伏发电技术项目投标书(技术标)
- 《现代库存管理:模型、算法与Python实现》 课件全套 杨超林 第1-17章 现代库存管理概述-某家电企业H的制造网络库存优化实战
- (正式版)QBT 5998-2024 宠物尿垫(裤)
- 2023年中国(教育部)留学服务中心招聘考试真题及答案
- 补习班辅导班学员合同协议书范本
- 肝性脑病小讲课
- 智慧农业的智能农机与装备
评论
0/150
提交评论