福建省德化一中、安溪一中2024届高三第一次诊断考试数学试题理试题_第1页
福建省德化一中、安溪一中2024届高三第一次诊断考试数学试题理试题_第2页
福建省德化一中、安溪一中2024届高三第一次诊断考试数学试题理试题_第3页
福建省德化一中、安溪一中2024届高三第一次诊断考试数学试题理试题_第4页
福建省德化一中、安溪一中2024届高三第一次诊断考试数学试题理试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省德化一中、安溪一中2023届高三第一次诊断考试数学试题理试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.12.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是()A. B. C. D.3.()A. B. C.1 D.4.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A. B. C. D.5.由曲线围成的封闭图形的面积为()A. B. C. D.6.已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为()A. B.C. D.7.下列图形中,不是三棱柱展开图的是()A. B. C. D.8.设函数,若在上有且仅有5个零点,则的取值范围为()A. B. C. D.9.已知α,β是两平面,l,m,n是三条不同的直线,则不正确命题是()A.若m⊥α,n//α,则m⊥n B.若m//α,n//α,则m//nC.若l⊥α,l//β,则α⊥β D.若α//β,lβ,且l//α,则l//β10.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.11.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.12.已知(i为虚数单位,),则ab等于()A.2 B.-2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________14.已知数列的前项和公式为,则数列的通项公式为___.15.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程中,p为“隅”,q为“实”.即若的大斜、中斜、小斜分别为a,b,c,则.已知点D是边AB上一点,,,,,则的面积为________.16.已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示.据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?18.(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.19.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.20.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.21.(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.(Ⅰ)求证:;(Ⅱ)若点在线段上,且平面,,,求二面角的余弦值.22.(10分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.①求数列的通项公式;②求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.2.D【解析】

因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,即,由得.故选:.【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.3.A【解析】

利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果.【详解】,,因此,.故选:A.【点睛】本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题.4.C【解析】由题意可得双曲线的渐近线的方程为.∵为线段的中点,∴,则为等腰三角形.∴由双曲线的的渐近线的性质可得∴∴,即.∴双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).5.A【解析】

先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.6.C【解析】

根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.7.C【解析】

根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.8.A【解析】

由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【详解】当时,,∵在上有且仅有5个零点,∴,∴.故选:A.【点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.9.B【解析】

根据线面平行、线面垂直和空间角的知识,判断A选项的正确性.由线面平行有关知识判断B选项的正确性.根据面面垂直的判定定理,判断C选项的正确性.根据面面平行的性质判断D选项的正确性.【详解】A.若,则在中存在一条直线,使得,则,又,那么,故正确;B.若,则或相交或异面,故不正确;C.若,则存在,使,又,则,故正确.D.若,且,则或,又由,故正确.故选:B【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.10.C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.11.D【解析】

先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.12.A【解析】

利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】,,得,..故选:.【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题14.【解析】

由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式.【详解】由题意,可知当时,;当时,.又因为不满足,所以.【点睛】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题.15..【解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求积术”公式即可求得答案.【详解】,所以,由余弦定理可知,得.根据“三斜求积术”可得,所以.【点睛】本题考查正切的和角公式,同角三角函数的基本关系式,余弦定理的应用,考查学生分析问题的能力和计算整理能力,难度较易.16.【解析】

根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线与圆相离,从而可得,解不等式,再利用离心率即可求解.【详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,因此当直线与圆相离时,恒为锐角,故,解得从而离心率.故答案为:【点睛】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)30;(2),比较划算.【解析】

(1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式即可求出结果,最后取近似值即可;(2)分别计算参保与不参保时的期望,,比较大小即可.【详解】解:(1)由,解得.保险公司每年收取的保费为:∴要使公司不亏本,则,即解得∴.(2)①若该老人购买了此项保险,则的取值为∴(元).②若该老人没有购买此项保险,则的取值为.∴(元).∴年龄为的该老人购买此项保险比较划算.【点睛】本题考查学生利用相关统计图表知识处理实际问题的能力,掌握频率分布直方图的基本性质,知道数学期望是平均数的另一种数学语言,为容易题.18.(1)(2)【解析】

(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,,,,故综上,实数的取值范围是(2)设,,则,令,,在单调递增,也就是在单调递增,所以.当即时,,不符合;当即时,,符合当即时,根据零点存在定理,,使,有时,,在单调递减,时,,在单调递增,成立,故只需即可,有,得,符合综上得,,实数的最小值为【点睛】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于难题.19.(1),函数的单调递增区间为;(2).【解析】

(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【详解】解:(1)由已知,所以因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以因为为锐角三角形,所以,解得因此,那么【点睛】本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.20.(1)(2)3+3【解析】

(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周长.【详解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周长a+b+c=3+3.【点睛】本题考查三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于中档题.21.(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)推导出BC⊥CE,从而EC⊥平面ABCD,进而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,从而BD⊥AC,进而四边形ABCD是菱形,由此能证明AB=AD.(Ⅱ)设AC与BD的交点为G,推导出EC//FG,取BC的中点为O,连结OD,则OD⊥BC,以O为坐标原点,以过点O且与CE平行的直线为x轴,以BC为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BF-D的余弦值.【详解】(Ⅰ)证明:,即,因为平面平面,所以平面,所以,因为,所以平面,所以,因为四边形是平行四边形,所以四边形是菱形,故;解法一:(Ⅱ)设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,取的中点为,连接,则,因为平面平面,所以面,以为坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论