




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为().A.90° B.120° C.135° D.150°2.在△ABC中,下列等式正确的是().A.a∶b=∠A∶∠B B.a∶b=sinA∶sinBC.a∶b=sinB∶sinA D.asinA=bsinB3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为().A.1∶2∶3 B.1∶∶2C.1∶4∶9 D.1∶∶4.在△ABC中,a=,b=,∠A=30°,则c等于().A.2 B. C.2或 D.或5.已知△ABC中,∠A=60°,a=,b=4,那么满足条件的△ABC的形状大小().A.有一种情形 B.有两种情形C.不可求出 D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是().A.锐角三角形 B.直角三角形 C.钝角三角形 D.形状不能确定7.在△ABC中,若b=,c=3,∠B=30°,则a=().A. B.2 C.或2 D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为,那么b=().A. B.1+ C. D.2+9.某人朝正东方向走了xkm后,向左转150°,然后朝此方向走了3km,结果他离出发点恰好km,那么x的值是().A. B.2 C.或2 D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为().A.60米 B.60米 C.60米或60米 D.30米二、填空题11.在△ABC中,∠A=45°,∠B=60°,a=10,b=.12.在△ABC中,∠A=105°,∠B=45°,c=,则b=.13.在△ABC中,∠A=60°,a=3,则=.14.在△ABC中,若a2+b2<c2,且sinC=,则∠C=.15.平行四边形ABCD中,AB=4,AC=4,∠BAC=45°,那么AD=.16.在△ABC中,若sinA∶sinB∶sinC=2∶3∶4,则最大角的余弦值=.三、解答题17.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.18.在△ABC中,已知b=,c=1,∠B=60°,求a和∠A,∠C.19.根据所给条件,判断△ABC的形状.(1)acosA=bcosB;(2)==.20.△ABC中,己知∠A>∠B>∠C,且∠A=2∠C,b=4,a+c=8,求a,c的长.
第一章解三角形参考答案一、选择题1.B解析:设三边分别为5k,7k,8k(k>0),中间角为,由cos==,得=60°,∴最大角和最小角之和为180°-60°=120°.2.B3.B4.C5.C6.C7.C8.B解析:依题可得:代入后消去a,c,得b2=4+2,∴b=+1,故选B.9.C10.A二、填空题11.5.12.2.13.2.解析:设===k,则=k===2.14..15.4.16.-.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sinC=sin45°=·=.∵csinA=×=,a=2,c=,<2<,∴本题有二解,即∠C=60°或∠C=120°,∠B=180°-60°-45°=75°或∠B=180°-120°-45°=15°.故b=sinB,所以b=+1或b=-1,∴b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°.解法2:由余弦定理得b2+()2-2bcos45°=4,∴b2-2b+2=0,解得b=±1.又()2=b2+22-2×2bcosC,得cosC=±,∠C=60°或∠C=120°,所以∠B=75°或∠B=15°.∴b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°.18.解析:已知两边及其中一边的对角,可利用正弦定理求解.解:∵=,∴sinC===.∵b>c,∠B=60°,∴∠C<∠B,∠C=30°,∴∠A=90°.由勾股定理a==2,即a=2,∠A=90°,∠C=30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得acosA=bcosBa·()=b·()a2c2-a4-b2c2+b4=0,∴(a2-b2)(c2-a2-b2)=0,∴a2-b2=0或c2-a2-b2=0,∴a=b或c2=a2+b2.∴△ABC是等腰三角形或直角三角形.解法2:由正弦定理得sinAcosA=sinBcosBsin2A=sin2B2∠A=2∠B或2∠A=-2∠B,∠A,∠B∈(0,)∠A=∠B或∠A+∠B=,∴△ABC是等腰三角形或直角三角形.(2)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC代入已知等式,得==,∴==,即tanA=tanB=tanC.∵∠A,∠B,∠C∈(0,π),∴∠A=∠B=∠C,∴△ABC为等边三角形.20.解析:利用正弦定理及∠A=2∠C用a,c的代数式表示cosC;再利用余弦定理,用a,c的代数式表示cosC,这样可以建立a,c的等量关系;再由a+c=8,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 3545.5-2023血液净化治疗技术管理第5部分:血液净化医疗机构应急处置规程
- DB31/T 823-2014猪尿中赛庚啶残留量的测定酶联免疫吸附法与液相色谱-串联质谱法
- DB31/T 780-2014公交企业能源管理指南
- DB31/T 746-2014自动扶梯和自动人行道主要部件判废技术要求
- DB31/T 562-2011工业园区物业管理服务规范
- DB31/T 1255-2020经营者竞争合规指南
- DB31/T 1189.1-2019车载紧急报警系统第1部分:需求及总体架构
- DB31/T 1186-2019特种设备风险分级管控通则
- DB31/ 282-2013西甜瓜品种
- 2024年地质勘察及探矿核仪器项目资金需求报告代可行性研究报告
- 土木工程宾馆毕业设计答辩ppt
- 初中数学思维训练120讲
- GB/T 462-2023纸、纸板和纸浆分析试样水分的测定
- 回转窑回转滚筒干燥机使用说明书
- 2023年四川省成都市中考历史试卷附答案解析
- 第四节 石油资源与国家安全
- 2023年广东初中学业水平考试生物试卷真题(含答案)
- 2023年全国统一高考政治试卷(新课标ⅰ)(含解析版)
- 新课程标准2022版综合实践
- 2023年浙江夏季世界少年思维研学“丁一杯”五年级数学模拟卷(一)含答案
- 260吨(t)吊车性能参数
评论
0/150
提交评论