




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年粤教版高三数学上册阶段测试试卷375考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共9题,共18分)1、若tanα=-且α是第四象限角,则sinα的值等于()A.B.C.-D.±2、求值:coscos=()A.B.C.2D.43、已知,x,y满足约束条件,则z=2x+y的最小值为()A.B.C.1D.24、已知定义域为R的函数f(x)满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(2,f((2))处的切线方程是()A.4x-y+4=0B.4x-y-4=0C.4x+y+4=0D.4x+y-4=05、cos70°•cos20°-sn70°•sin20°的值是()A.0B.1C.sin50°D.cos50°6、若正四面体S-ABC的面ABC内有一动点P分别到平面SAB、平面SBC、平面SAC的距离成等差数列,则点P的轨迹是()A.一条线段B.一个点C.一段圆弧D.抛物线的一段7、已知{an}是等比数列,,,则a8=()A.B.C.D.8、过抛物线x2=8y的焦点作圆x2+(y+2)2=4的一条切线,设该切线与抛物线交于A、B两点,则|AB|的值为()A.B.C.16D.329、已知集合P={x||x-1|<4,x∈R},Q={x|y=ln(x+2)},则P∩Q=()A.(-2,+∞)B.(-3,5)C.(-2,5)D.(5,+∞)评卷人得分二、填空题(共6题,共12分)10、已知命题p:若x2-1>0,则x>1,命题q:若x2-1>0,则x<-1,写出命题p∨q为____.11、cos(+α)=____.12、函数f(x)=x3+ax,对|x|≤3时,总有|f(x)|≤16成立,则实数a的取值范围是____.13、若过正三角形ABC的顶点A任作一条直线l,则l与线段BC相交的概率为________.14、如果执行的程序框图如图所示,那么输出的S=____.
15、【题文】设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为________.评卷人得分三、判断题(共6题,共12分)16、判断集合A是否为集合B的子集;若是打“√”,若不是打“×”.
(1)A={1,3,5},B={1,2,3,4,5,6}.____;
(2)A={1,3,5},B={1,3,6,9}.____;
(3)A={0},B={x|x2+1=0}.____;
(4)A={a,b,c,d},B={d,b,c,a}.____.17、函数y=sinx,x∈[0,2π]是奇函数.____(判断对错)18、已知函数f(x)=4+ax-1的图象恒过定点p,则点p的坐标是(1,5)____.(判断对错)19、函数y=sinx,x∈[0,2π]是奇函数.____(判断对错)20、空集没有子集.____.21、若b=0,则函数f(x)=(2k+1)x+b在R上必为奇函数____.评卷人得分四、其他(共1题,共5分)22、已知函数f(x)=2x-的定义域为(0;1](其中a是实数)
(1)当a=-1时;求函数y=f(x)的值域;
(2)若函数y=f(x)在定义域上是减函数;求实数a的取值范围;
(3)求不等式f(x)≥0的解集.评卷人得分五、解答题(共1题,共6分)23、已知函数的最大值是2;且f(0)=1.
(Ⅰ)求φ的值;
(Ⅱ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若a=2,f(2A)=,2bsinC=c.求△ABC的面积.评卷人得分六、作图题(共2题,共14分)24、作出y=x的图象,并判断点P(-2,3),Q(4,2)是否为图象上的点.25、若x,y∈R,且,则z=x+2y的最大值等于____.参考答案一、选择题(共9题,共18分)1、C【分析】【分析】根据题意,由商数关系可得=,进而由平方关系可得sin2α+cos2α=1,联立两式可得sinα=±,又由α是第四象限角,则sinα<0,即可得答案.【解析】【解答】解:根据题意,tanα=-,则=;①
又有sin2α+cos2α=1;②
解可得sinα=±;
又由α是第四象限角,则sinα=-;
故选:C.2、A【分析】【分析】利用、诱导公式求解.【解析】【解答】解:coscos===.
故选:A.3、C【分析】【分析】作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.【解析】【解答】解:作出不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z;
平移直线y=-2x+z;
由图象可知当直线y=-2x+z经过点B时;直线的截距最小;
此时z最小;
由,解得;
即B(1;-1),此时z=1×2-1=1;
故选:C.4、B【分析】【分析】先根据f(x)=2f(2-x)-x2+8x-8求出函数f(x)的解析式,然后对函数f(x)进行求导,进而可得到y=f(x)在点(2,f(2))处的切线方程的斜率,最后根据点斜式可求导切线方程.【解析】【解答】解:∵f(x)=2f(2-x)-x2+8x-8;
∴f(2-x)=2f(x)-(2-x)2+8(2-x)-8.
∴f(2-x)=2f(x)-x2+4x-4+16-8x-8.
将f(2-x)代入f(x)=2f(2-x)-x2+8x-8
得f(x)=4f(x)-2x2-8x+8-x2+8x-8.
∴f(x)=x2;f′(x)=2x;
∴y=f(x)在(2;f(2))处的切线斜率为y′=4.
∴函数y=f(x)在(2;f(2))处的切线方程为y-4=4(x-2);
即y=4x-4.
故选:B.5、A【分析】【分析】利用两角和的余弦函数公式化简后即可得答案.【解析】【解答】解:cos70°•cos20°-sn70°•sin20°=cos(70°+20°)=cos90°=0;
故选:A.6、A【分析】【分析】根据正四面体的体积为定值,可知P到三棱锥S-ABC的侧面SAB、侧面SBC、侧面SAC的距离和为定值,又P到三棱锥S-ABC的侧面SAB、侧面SBC、侧面SAC的距离依次成等差数列,故P到侧面SBC的距离为定值,从而得解.【解析】【解答】解:设点P到三个面的距离分别是d1,d2,d3
因为正三棱锥的体积为定值,所以d1+d2+d3为定值;
因为d1,d2,d3成等差数列;
所以d1+d3=2d2
∴d2为定值;
所以点P的轨迹是平行BC的线段.
故选A.7、C【分析】【分析】设公比为q,由题意可得=q3,解得q=,根据a8=运算求得结果.【解析】【解答】解:设公比为q,∵,;
∴=q3,解得q=;
故a8==;
故选C.8、D【分析】【分析】由题设条件,作出图象,结合图象知AB与y轴正半轴的夹角θ=30°,由此知|AB|===32.【解析】【解答】解:由题设条件;作出图象;
过圆心O作OC⊥AB;交AB于C,则C为切点;
设抛物线的焦点为F;由题设知|OB|=4,|OC|=2;
所以AB与y轴正半轴的夹角θ=30°;
∴|AB|===32.
故选D.
9、C【分析】【分析】先分别求出集合P,Q,然后利用交集的运算进行求解即可【解析】【解答】解:由题意可得P={x|-3<x<5};Q={x|x>-2}
∴P∩Q={x|-2<x<5}
故选C.二、填空题(共6题,共12分)10、略
【分析】【分析】利用“或命题”的定义即可得出.【解析】【解答】解:由命题p:若x2-1>0,则x>1,命题q:若x2-1>0;则x<-1;
则命题p∨q为:“若x2-1>0,则x>1”或“若x2-1>0,则x<-1”,即“若x2-1>0;则x>1或x<-1”;
故答案为:若x2-1>0,则x>1或x<-1.11、略
【分析】【分析】由两角和与差的余弦函数公式即可化简.【解析】【解答】解:cos(+α)=coscosα-sinsinα+coscosα+sinsinα=2coscosα=cosα.
故答案为:cosα.12、略
【分析】【分析】求函数f(x)的导数f′(x),对a分类讨论,求出对应f(x)的最大值f(x)max,使f(x)max≤16,从而求出实数a的取值范围.【解析】【解答】解:∵f(x)=x3+ax,∴f′(x)=3x2+a;
对a分类讨论,∵|x|≤3,∴x2≤9;
故分3类:
①a≥0时;f′(x)≥0恒成立,f(x)单调递增;
∴f(x)max=f(3)=27+3a≤16无解;
②a<-27时;f′(x)≤0恒成立,f(x)单调递减;
f(x)max=f(-3)=-27-3a≤16无解;
③-27≤a<0时;令f′(x)≥0;
解得x≥或x≤-;
此时f(x)只可能在极大值或端点处取到最大值;
故同时使;
解得,即-12≤a≤-;
综上,实数a的取值范围是-12≤a≤-.13、略
【分析】∠BAC=60°,故所求的概率=【解析】【答案】14、略
【分析】
分析程序中各变量;各语句的作用;
再根据流程图所示的顺序;可知:
该程序的作用是累加S=0+2+4+6++100;
∵S=0+2+4+6++100=2550.
故答案为:2550.
【解析】【答案】分析程序中各变量;各语句的作用;再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=0+2+4+6++100的值.
15、略
【分析】【解析】设查得的次品数为随机变量X;
由题意得X~B所以E(X)=150×=10.【解析】【答案】10三、判断题(共6题,共12分)16、√【分析】【分析】根据子集的概念,判断A的所有元素是否为B的元素,是便说明A是B的子集,否则A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;
(2)5∈A;而5∉B,∴A不是B的子集;
(3)B=∅;∴A不是B的子集;
(4)A;B两集合的元素相同,A=B,∴A是B的子集.
故答案为:√,×,×,√.17、×【分析】【分析】根据奇函数的定义进行判断即可得到答案.【解析】【解答】解:∵x∈[0;2π],定义域不关于原点对称;
故函数y=sinx不是奇函数;
故答案为:×18、√【分析】【分析】已知函数f(x)=ax-1+4,根据指数函数的性质,求出其过的定点.【解析】【解答】解:∵函数f(x)=ax-1+4;其中a>0,a≠1;
令x-1=0,可得x=1,ax-1=1;
∴f(x)=1+4=5;
∴点P的坐标为(1;5);
故答案为:√19、×【分析】【分析】根据奇函数的定义进行判断即可得到答案.【解析】【解答】解:∵x∈[0;2π],定义域不关于原点对称;
故函数y=sinx不是奇函数;
故答案为:×20、×【分析】【分析】根据空集的性质,分析可得空集是其本身的子集,即可得答案.【解析】【解答】解:根据题意;空集是任何集合的子集,是任何非空集合的真子集;
即空集是其本身的子集;则原命题错误;
故答案为:×.21、√【分析】【分析】根据奇函数的定义即可作出判断.【解析】【解答】解:当b=0时;f(x)=(2k+1)x;
定义域为R关于原点对称;
且f(-x)=-(2k+1)x=-f(x);
所以函数f(x)为R上的奇函数.
故答案为:√.四、其他(共1题,共5分)22、略
【分析】【分析】(1)a=-1时,f(x)=2x+(0,]上递减,在(;1)递增,继而求出函数的值域;
(2)先求导数f′(x);由已知可得f′(x)≤0在(0,1]恒成立,运用参数分离,求出右边的最小值即可;
(3)根据a的值进行分类讨论,得到不等式的解集.【解析】【解答】解:(1)a=-1时,f(x)=2x+在(0,]上为递减;
在(;1)递增;
∴当x=时,函数有最小值为f()=2;
当x→0时;f(x)→+∞;
故函数y=f(x)的值域为[2;+∞);
(2)f(x)=2x-的定义为x≠0;
∴f′(x)=2+=;
∵函数y=f(x)在定义域上是减函数;
∴f′(x)≤0在(0;1]恒成立;
∴≤0;
即a≤-2x2;
由于-2x2在(0;1]递减,则最小值为-2.
则a≤-2.
(3)f(x)=2x-≥0;x∈(0,1];
∴2x2-a≥0;
即x2≥;
当a≤0时;解得0<x≤1;
当a>0时,解得x≥;
当0<a<2时,解得≤x≤1;
当a=2时;解得x=1;
当a>2时;无解;
综上所述;当a≤0时,解集为(0,1];
当0<a<2时,解集为[;1];
当a=2时;解集为{1};
当a>2时,解集为∅.五、解答题(共1题,共6分)23、略
【分析】【分析】(Ⅰ)f(x)解析式利用两角和与差的正弦函数公式化简;根据f(0)=1,及A的值求出φ的值即可;
(Ⅱ)由第一问确定出的f(x)解析式,结合f(2A)=,求出A的度数,已知等式利用正弦定理化简求出sinB的值,再由a的值,利用正弦定理求出b的值,由A与B的度数求出C的度数,确定出sinC的值,利用三角形面积公式即可求出三角形ABC面积.【解析】【解答】解:(Ⅰ)f(x)=A(sincosφ+cossinφ)=Asin(+φ);
由于f(x)的最大值为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 3761.5-2020新型冠状病毒肺炎疫情防控技术规范第5部分:社区
- DB32/T 3761.31-2021新型冠状病毒肺炎疫情防控技术规范第31部分:核酸采样点
- DB32/T 3634-2019船闸工程质量检验规范
- DB32/T 3218-2017公路工程控制模量桩复合地基技术规程
- DB31/T 893-2015公交车辆节油驾驶操作指南
- DB31/T 704-2013南美白对虾亲虾培育技术规范
- DB31/T 684-2013老年照护等级评估要求
- DB31/T 1399-2023聚对苯二甲酸乙二醇酯(PET)瓶回收规程
- DB31/T 1259-2020保健食品经营管理规范
- DB31/T 1245-2020医疗应急救援车载移动医院车辆管理要求
- JJF(津) 54-2021 液体流量计在线校准规范
- 关于进一步厉行节约推行无纸化办公的通知
- 刘德武教学课件小学数学一年级下册《找规律》
- 河池市大任产业园污水处理厂(江南污水处理厂二期)项目环境影响报告书
- DB22-T 5118-2022 建筑工程资料管理标准
- 集体备课《发生在肺内的气体交换》
- 六年级下册生命生态安全知识要点
- JJG 211-2021 亮度计检定规程(高清最新版)
- 高压喷射注浆工程施工工艺标准
- 最新部编版九年级语文下册课件(完美版)写作布局谋篇
- 农村水电站岗位设置及定员标准(全面)
评论
0/150
提交评论