2024年江苏省南通市中考数学试题含解析_第1页
2024年江苏省南通市中考数学试题含解析_第2页
2024年江苏省南通市中考数学试题含解析_第3页
2024年江苏省南通市中考数学试题含解析_第4页
2024年江苏省南通市中考数学试题含解析_第5页
已阅读5页,还剩80页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省南通市中考数学试题含解析数学注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.如果零上记作,那么零下记作()A. B. C. D.2.2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为()A. B. C. D.3.计算的结果是()A.9 B.3 C. D.4.如图是一个几何体三视图,该几何体是()A球 B.棱柱 C.圆柱 D.圆锥5.如图,直线,矩形的顶点A在直线b上,若,则的度数为()A. B. C. D.6.红星村种的水稻2021年平均每公顷产,2023年平均每公顷产.求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x.列方程为()A. B.C. D.7.将抛物线向右平移3个单位后得到新抛物线的顶点坐标为()A. B. C. D.8.“赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,.若小正方形面积为5,,则大正方形面积为()A.12 B.13 C.14 D.159.甲、乙两人沿相同路线由A地到B地匀速前进,两地之间的路程为.两人前进路程s(单位:)与甲的前进时间t(单位:h)之间的对应关系如图所示.根据图象信息,下列说法正确的是()A.甲比乙晚出发1h B.乙全程共用2hC.乙比甲早到B地3h D.甲的速度是10.在中,,,垂足为H,D是线段上的动点(不与点H,C重合),将线段绕点D顺时针旋转得到线段.两位同学经过深入研究,小明发现:当点E落在边上时,点D为的中点;小丽发现:连接,当的长最小时,.请对两位同学的发现作出评判()A.小明正确,小丽错误 B.小明错误,小丽正确C.小明、小丽都正确 D.小明、小丽都错误二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.分解因式:_________.12.已知圆锥的底面半径为,母线长为,则该圆锥的侧面积为______.13.已知关于x一元二次方程有两个不相等的实数根.请写出一个满足题意的k的值:______.14.社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B处测得旗杆顶部A的仰角为,,则旗杆的高度为______m.15.若菱形的周长为,且有一个内角为,则该菱形的高为______.16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此器电池为电源的用电器的限制电流I不能超过10A,那么用电器可变电阻R应控制的范围是______.17.如图,在中,,.正方形的边长为,它的顶点D,E,G分别在的边上,则的长为______.18.平面直角坐标系中,已知,.直线(k,b为常数,且)经过点,并把分成两部分,其中靠近原点部分的面积为,则k的值为______.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:;(2)解方程.20.我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.50个家庭去年月均用水量频数分布表组别家庭月均用水量(单位:吨)频数A7BmCnD6E2合计

50根据上述信息,解答下列问题:(1)______,______;(2)这50个家庭去年月均用水量的中位数落在______组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨的家庭数有多少个?21.如图,点D在的边AB上,经过边的中点E,且.求证.22.南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为______;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.23.如图,中,,,,与相切于点D.(1)求图中阴影部分的面积;(2)设上有一动点P,连接,.当的长最大时,求的长.24.某快递企业为提高工作效率,拟购买A、B两种型号智能机器人进行快递分拣.相关信息如下:信息一A型机器人台数B型机器人台数总费用(单位:万元)1326032360信息二(1)求A、B两种型号智能机器人单价;(2)现该企业准备用不超过700万元购买A、B两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?25.已知函数(a,b为常数).设自变量x取时,y取得最小值.(1)若,,求的值;(2)在平面直角坐标系中,点在双曲线上,且.求点P到y轴的距离;(3)当,且时,分析并确定整数a的个数.26.综合与实践:九年级某学习小组围绕“三角形的角平分线”开展主题学习活动.【特例探究】(1)如图①,②,③是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表图序角平分线长的度数腰长两腰之和两腰之积图①1244图②122图③1__________________请补全表格中数据,并完成以下猜想.已知的角平分线,,,用含的等式写出两腰之和与两腰之积之间的数量关系:______.【变式思考】(2)已知的角平分线,,用等式写出两边之和与两边之积之间的数量关系,并证明.【拓展运用】(3)如图④,中,,点D在边上,.以点C为圆心,长为半径作弧与线段相交于点E,过点E作任意直线与边,分别交于M,N两点.请补全图形,并分析的值是否变化?

数学注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.如果零上记作,那么零下记作()A. B. C. D.【答案】A【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解∶∵零上记作,∴零下记作,故选∶A.2.2024年5月,财政部下达1582亿元资金,支持地方进一步巩固和完善城乡统一、重在农村的义务教育经费保障机制.将“1582亿”用科学记数法表示为()A. B. C. D.【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定的值以及的值.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值大于10时,是正数;当原数的绝对值小于1时,是负数.【详解】解:1582亿.故选:C.3.计算的结果是()A.9 B.3 C. D.【答案】B【解析】【分析】本题考查的是二次根式的乘法运算,直接利用二次根式的乘法运算法则计算即可.【详解】解:,故选B.4.如图是一个几何体的三视图,该几何体是()A.球 B.棱柱 C.圆柱 D.圆锥【答案】D【解析】【分析】本题主要考查了由三视图判断几何体,结合三视图与原几何体的关系即可解决问题【详解】解:由所给三视图可知,该几何体为圆锥,故选:D5.如图,直线,矩形的顶点A在直线b上,若,则的度数为()A. B. C. D.【答案】C【解析】【分析】本题考查矩形的性质,平行线的判定和性质,过点作,得到,推出,进行求解即可.【详解】解:∵矩形,∴,过点作,∵,∴,∴,∴,∵,∴;故选C.6.红星村种的水稻2021年平均每公顷产,2023年平均每公顷产.求水稻每公顷产量的年平均增长率.设水稻每公顷产量的年平均增长率为x.列方程为()A. B.C. D.【答案】A【解析】【分析】本题主要考查了一元二次方程的应用,设水稻每公顷产量的年平均增长率为x,则2022年平均每公顷,则2023年平均每公顷产,根据题意列出一元二次方程即可.【详解】解:设水稻每公顷产量的年平均增长率为x,则2022年平均每公顷产,则2023年平均每公顷产,根据题意有:,故选:A.7.将抛物线向右平移3个单位后得到新抛物线的顶点坐标为()A. B. C. D.【答案】D【解析】【分析】本题考查了二次函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.根据平移规律,上加下减,左加右减,可得顶点式解析式.【详解】解∶抛物线向右平移3个单位后得到新抛物为,∴新抛物线的顶点坐标为,故选∶D.8.“赵爽弦图”巧妙利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等直角三角形和中间的小正方形拼成的一个大正方形.设直角三角形的两条直角边长分别为m,.若小正方形面积为5,,则大正方形面积为()A.12 B.13 C.14 D.15【答案】B【解析】【分析】本题考查勾股定理的证明,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.由题意可知,中间小正方形的边长为,根据勾股定理以及题目给出的已知数据即可求出大正方形的面积为.【详解】解:由题意可知,中间小正方形的边长为,∴,即①,∵,∴②,①②得,∴大正方形的面积,故选:B.9.甲、乙两人沿相同路线由A地到B地匀速前进,两地之间的路程为.两人前进路程s(单位:)与甲的前进时间t(单位:h)之间的对应关系如图所示.根据图象信息,下列说法正确的是()A.甲比乙晚出发1h B.乙全程共用2hC.乙比甲早到B地3h D.甲的速度是【答案】D【解析】【分析】本题考查用函数图象表示变量之间的关系,从函数图形获取信息,逐一进行判断即可.【详解】解:A、乙比甲晚出发1h,原说法错误,不符合题意;B、乙全程共用,原说法错误,不符合题意;C、乙比甲早到B地,原说法错误,不符合题意;D、甲的速度是,原说法正确,符合题意;故选D.10.在中,,,垂足为H,D是线段上的动点(不与点H,C重合),将线段绕点D顺时针旋转得到线段.两位同学经过深入研究,小明发现:当点E落在边上时,点D为的中点;小丽发现:连接,当的长最小时,.请对两位同学的发现作出评判()A.小明正确,小丽错误 B.小明错误,小丽正确C.小明、小丽都正确 D.小明、小丽都错误【答案】C【解析】【分析】旋转得到,当点E落在边上时,利用三角形的外角推出,进而得到,推出,判断小明的说法,连接,等边对等角,求出,进而求出,推出点在射线上运动,根据垂线段最短,得到时,的长最小,进而推出,判断小丽的说法即可.【详解】解:∵将线段绕点D顺时针旋转得到线段,∴,当点E落在边上时,如图:∵,,∴,∴,∴,∴为的中点,故小明的说法是正确的;连接,∵,∴,∵,∴,∴,∴点在射线上运动,∴当时,的长最小,∴当的长最小时,,又∵,∴,∴,∴;故小丽的说法正确;故选C.【点睛】本题考查旋转的性质,三角形的外角,等腰三角形的判定和性质,垂线段最短,相似三角形的判定和性质,熟练掌握旋转的性质,根据题意,正确的作图,确定点的轨迹,是解题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.分解因式:_________.【答案】【解析】【详解】此题考查因式分解知识点,考查提取公因式法、公式法的因式分解的方法;首先看是否有公因式,如果有先提取公因式,然后利用公式法进行分解,要分解到不能再分解为止;解:原式=;12.已知圆锥的底面半径为,母线长为,则该圆锥的侧面积为______.【答案】【解析】【分析】本题考查求圆锥的侧面积,根据圆锥的侧面积公式进行计算即可.【详解】解:圆锥的侧面积为;故答案为:.13.已知关于x的一元二次方程有两个不相等的实数根.请写出一个满足题意的k的值:______.【答案】0(答案不唯一)【解析】【分析】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.先根据判别式的意义得到,解不等式得到的范围,然后在此范围内取一个值即可.【详解】解∶∵一元二次方程有两个不相等的实数根,∴,解得,∴当k取0时,方程有两个不相等的实数根.故答案为:0(答案不唯一).14.社团活动课上,九年级学习小组测量学校旗杆的高度.如图,他们在B处测得旗杆顶部A的仰角为,,则旗杆的高度为______m.【答案】【解析】【分析】本题考查解直角三角形的应用,直接利用锐角三角函数,求出的值即可.【详解】解:由题意:,∴;故答案为:.15.若菱形的周长为,且有一个内角为,则该菱形的高为______.【答案】【解析】【分析】本题考查的是菱形的性质,锐角的正弦的含义,先画图,求解,过作于,结合可得答案.【详解】解:如图,菱形的周长为,∴,过作于,而,∴,故答案为:16.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此器电池为电源的用电器的限制电流I不能超过10A,那么用电器可变电阻R应控制的范围是______.【答案】【解析】【分析】本题考查反比例函数的实际应用,根据图象求出反比例函数的解析式,进而求出时,电阻R的值,根据增减性,求出电阻R应控制的范围即可.【详解】解:由图象,设,把代入,得:,∴,当时,,∵随着的增大而减小,∴如果以此器电池为电源的用电器的限制电流I不能超过10A时,;故答案为:.17.如图,在中,,.正方形的边长为,它的顶点D,E,G分别在的边上,则的长为______.【答案】【解析】【分析】过点作,易得为等腰直角三角形,设,得到,证明,得到,进而得到,,在中,利用勾股定理求出的值,根据平行线分线段成比例,求出的长即可.【详解】解:过点作,则:,∴,∵,,∴,∴,∴,设,则:,∵正方形,∴,∴,∴,∵,∴,∴,∴,中,由勾股定理,得:,∴,解得:,∴,∵,∴,∴,∴;故答案为:.【点睛】本题考查等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理,正方形的性质,平行线分线段成比例,解题的关键是添加辅助线构造特殊图形和全等三角形.18.平面直角坐标系中,已知,.直线(k,b为常数,且)经过点,并把分成两部分,其中靠近原点部分的面积为,则k的值为______.【答案】##0.6【解析】【分析】本题主要考查了一次函数的综合问题,根据题意画出图形,求待定系数法求出的解析式,再根据直线经过点,求出,联立两直线求出点D的坐标,再根据靠近原点部分的面积为为等量关系列出关于k的等式,求解即可得出答案.【详解】解:根据题意画出图形如下,设直线的解析式为:,把,B0,3代入,可得出:,解得:,∴直线的解析式为:,∵直线经过点,∴,∴,∴直线,联立两直线方程:,解得:,∴∵,B0,3,∴,,根据题意有:,即,,解得:,故答案为:.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:;(2)解方程.【答案】(1)(2)【解析】【分析】本题考查了单项式乘多项式,解分式方程,掌握运算法则是解题的关键.(1)根据单项式乘以多项式的运算法则进行计算即可得到答案;(2)根据解分式方程的步骤进行计算即可.【详解】解:(1);(2),,∴检验,当时,,所以,原分式方程的解为20.我国淡水资源相对缺乏,节约用水应成为人们的共识.为了解某小区家庭用水情况,随机调查了该小区50个家庭去年的月均用水量(单位:吨),绘制出如下未完成的统计图表.50个家庭去年月均用水量频数分布表组别家庭月均用水量(单位:吨)频数A7BmCnD6E2合计

50根据上述信息,解答下列问题:(1)______,______;(2)这50个家庭去年月均用水量的中位数落在______组;(3)若该小区有1200个家庭,估计去年月均用水量小于4.8吨家庭数有多少个?【答案】(1)20,15(2)B(3)648个【解析】【分析】本题主要考查了扇形统计图,中位数的定义,以及用样本估计总体等知识.(1)根据C组的扇形统计图的度数即可求出n的值,再用50减去其他组别的频数,即可求出m的值.(2)根据中位数的定义即可得出答案.(3)用样本估计总体即可.【小问1详解】解:根据题意可知:,解得:,∴,故答案为:20,15;【小问2详解】解:∵一共有50组用水量数据,∴50组数据从小到大排列,中位数为第25位和26位的平均数,即中位数在B组.∴这50个家庭去年月均用水量的中位数落在B组,故答案为:B;【小问3详解】解:(个),故去年月均用水量小于4.8吨的家庭数有648个.21.如图,点D在的边AB上,经过边的中点E,且.求证.【答案】见详解【解析】【分析】本题主要考查全等三角形的判定和性质以及平行线的判定,根据题意得,即可证明,有成立,根据平行线的判定即可证明结论.【详解】证明:∵点E为边的中点,∴,∵,,∴,∴,∴.22.南通地铁1号线“世纪大道站”有标识为1、2、3、4的四个出入口.某周六上午,甲、乙两位学生志愿者随机选择该站一个出入口,开展志愿服务活动.(1)甲在2号出入口开展志愿服务活动的概率为______;(2)求甲、乙两人在同一出入口开展志愿服务活动的概率.【答案】(1)(2)【解析】【分析】题考查了利用列表法或树状图法求概率:先列表或画树状图展示所有等可能的结果数m,再找出某事件所占有的可能数n,然后根据概率的概念即可得到这个事件的概率.(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式可得答案.【小问1详解】解:∵有标识为1、2、3、4的四个出入口,∴甲在2号出入口开展志愿服务活动的概率为,故答案为:;【小问2详解】解:画树状图如下:共有16种等可能结果,其中甲、乙两人在同一出入口开展志愿服务活动有4种结果,∴甲、乙两人在同一出入口开展志愿服务活动的概率为.23.如图,中,,,,与相切于点D.(1)求图中阴影部分的面积;(2)设上有一动点P,连接,.当的长最大时,求的长.【答案】(1)(2)【解析】【分析】本题考查了切线的性质,勾股定理的逆定理,扇形的面积公式等知识,解题的关键是:(1)连接,利用勾股定理的逆定理判定得出,利用切线的性质得出,利用等面积法求出,然后利用求解即可;(2)延长CA交于P,连接,则最大,然后在中,利用勾股定理求解即可.【小问1详解】解∶连接,∵,,,∴,∴,∵与相切于D,∴,∵,∴,∴;【小问2详解】解∶延长CA交于P,连接,此时最大,由(1)知:,,∴.24.某快递企业为提高工作效率,拟购买A、B两种型号智能机器人进行快递分拣.相关信息如下:信息一A型机器人台数B型机器人台数总费用(单位:万元)1326032360信息二(1)求A、B两种型号智能机器人的单价;(2)现该企业准备用不超过700万元购买A、B两种型号智能机器人共10台.则该企业选择哪种购买方案,能使每天分拣快递的件数最多?【答案】(1)A型智能机器人的单价为80万元,B型智能机器人的单价为60万元(2)选择购买A型智能机器人5台,购买B型智能机器人5台【解析】【分析】本题考查了一元一次不等式的应用,二元一次方程组的应用,掌握二元一次方程组,一元一次不等式的应用是解题的关键.(1)设A型智能机器人的单价为x万元,B型智能机器人的单价为y万元,根据题意列出方程组,计算结果即可;(2)设购买A型智能机器人a台,则购买B型智能机器人台,先求出a的取值范围,再得出每天分拣快递的件数当a取得最大值时,每天分拣快递的件数最多.【小问1详解】解:设A型智能机器人的单价为x万元,B型智能机器人的单价为y万元,解得,答:A型智能机器人的单价为80万元,B型智能机器人的单价为60万元;【小问2详解】解:设购买A型智能机器人a台,则购买B型智能机器人台,∴,∴,∵每天分拣快递的件数,∴当时,每天分拣快递的件数最多为万件,∴选择购买A型智能机器人5台,购买B型智能机器人5台.25.已知函数(a,b为常数).设自变量x取时,y取得最小值.(1)若,,求的值;(2)在平面直角坐标系中,点在双曲线上,且.求点P到y轴的距离;(3)当,且时,分析并确定整数a的个数.【答案】(1)(2)2或1(3)整数a有4个【解析】【分析】本题主要考查二次函数的性质和点到坐标轴的距离,以及解不等式方程.根据题意代入化简得,结合二次函数得性质得取最小值时x的取值即可;结合题意得到,代入二次函数中化简得,利用二次函数的性质求得a的值,进一步求得点P,即可知点P到y轴的距离;结合已知得等式化简得,结合的范围求得a的可能值,即可得到整数a的个数.【小问1详解】解:有题意知,当时,y取得最小值8;【小问2详解】解:∵点在双曲线上,∴,∴,∵,∴,化解得,解得或,则点或,∴点P到y轴的距离为2或1;【小问3详解】解:

∵,∴,∴,∵,∴,化简得,∴,则整数a有4个.26.综合与实践:九年级某学习小组围绕“三角形角平分线”开展主题学习活动.特例探究】(1)如图①,②,③是三个等腰三角形(相关条件见图中标注),列表分析两腰之和与两腰之积.等腰三角形两腰之和与两腰之积分析表图序角平分线的长的度数腰长两腰之和两腰之积图①1244图②122图③1__________________请补全表格中数据,并完成以下猜想.已知的角平分线,,,用含的等式写出两腰之和与两腰之积之间的数量关系:______.【变式思考】(2)已知的角平分线,,用等式写出两边之和与两边之积之间的数量关系,并证明.【拓展运用】(3)如图④,中,,点D在边上,.以点C为圆心,长为半径作弧与线段相交于点E,过点E作任意直线与边,分别交于M,N两点.请补全图形,并分析的值是否变化?【答案】(1)见解析;,(2),证明见解析;(3)是定值【解析】【分析】(1)根据特殊角的三角函数值分别计算,再填表即可;再由可得结论;(2)如图,延长至使,连接,过作于,延长交于,证明为等边三角形,,,设,,利用相似三角形的性质求解,再进一步可得;(3)如图,补全图形如下:设,则,,求解,可得,连接,,并延长交于,再求解;可得是定值.【详解】解:(1)∵,是角平分线,,∴,∴;∴,;图序角平分线的长的度数腰长两腰之和两腰之积图①1244图②122图③1如图,由(1)可得:,∴,∴,,∴;(2)猜想:,理由如下:如图,延长至使,连接,过作于,延长交于,∵,平分,∴为等边三角形,,,设,,∴,,而,∴,∵,,∴,∴,,∴,,∵,∴,即,解得:,∴;,∴;(3)如图,补全图形如下:∵中,,点D在边上,∴设,则,,∴,解得:,∴,∴,即,∴,连接,,并延长交于,∵,∴,,∴平分,∴平分,∵,∴,∵,∴,∴,设,则,∴,即,解得:(不符合题意的根舍去),∴,∴,,∵是的垂直平分线,∴,∴;∴是定值.【点睛】本题属于实际探究题,考查了类比方法的应用,等腰三角形的性质,相似三角形的判定与性质,勾股定理的应用,锐角三角函数的灵活应用,作出合适的辅助线是解本题的关键.

2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.用数轴上的点表示下列各数,其中与原点距离最近的是()A. B.1 C.2 D.32.下列图案中,是轴对称图形的是()A. B. C. D.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A. B. C. D.4.若,则下列结论一定正确的是()A. B. C. D.5.如图,,若,,则的度数为()A. B. C. D.6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁 B.乙、戊 C.丙、丁 D.丙、戊7.如图,点A为反比例函数图象上的一点,连接,过点O作的垂线与反比例的图象交于点B,则的值为()A. B. C. D.8.如图,矩形中,,,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿,向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则的最大值为()A. B. C.2 D.1二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.计算:___________.10.若,则______.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.12.如图,是的内接三角形,若,则______.13.直线与x轴交于点A,将直线绕点A逆时针旋转,得到直线,则直线对应的函数表达式是______.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是的内心,若,则花窗的周长(图中实线部分的长度)______.(结果保留)15.二次函数的图象过点,,,,其中m,n为常数,则的值为______.16.如图,,,,,点D,E分别在边上,,连接,将沿翻折,得到,连接,.若的面积是面积的2倍,则______.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.计算:.18.解方程组:.19.先化简,再求值:.其中.20.如图,中,,分别以B,C为圆心,大于长为半径画弧,两弧交于点D,连接,,,与交于点E.(1)求证:;(2)若,,求的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)人数.23.图①是某种可调节支撑架,为水平固定杆,竖直固定杆,活动杆可绕点A旋转,为液压可伸缩支撑杆,已知,,.(1)如图②,当活动杆处于水平状态时,求可伸缩支撑杆的长度(结果保留根号);(2)如图③,当活动杆绕点A由水平状态按逆时针方向旋转角度,且(为锐角),求此时可伸缩支撑杆的长度(结果保留根号).24.如图,中,,,,,反比例函数的图象与交于点,与交于点E.

(1)求m,k的值;(2)点P为反比例函数图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作,交y轴于点M,过点P作轴,交于点N,连接,求面积的最大值,并求出此时点P的坐标.25.如图,中,,D为中点,,,是的外接圆.(1)求的长;(2)求的半径.26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中信息,解答下列问题:(1)D1001次列车从A站到B站行驶了______分钟,从B站到C站行驶了______分钟;(2)记D1001次列车的行驶速度为,离A站的路程为;G1002次列车的行驶速度为,离A站的路程为.①______;②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则),已知千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中,若,求t的值.27.如图①,二次函数图象与开口向下的二次函数图象均过点,.(1)求图象对应函数表达式;(2)若图象过点,点P位于第一象限,且在图象上,直线l过点P且与x轴平行,与图象的另一个交点为Q(Q在P左侧),直线l与图象的交点为M,N(N在M左侧).当时,求点P的坐标;(3)如图②,D,E分别为二次函数图象,的顶点,连接AD,过点A作.交图象于点F,连接EF,当时,求图象对应的函数表达式.2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.用数轴上的点表示下列各数,其中与原点距离最近的是()A. B.1 C.2 D.3【答案】B【解析】【分析】本题考查了绝对值的定义,一个数的绝对值就是表示这个数的点到原点的距离.到原点距离最远的点,即绝对值最大的点,首先求出各个数的绝对值,即可作出判断.【详解】解:∵,,,,,∴与原点距离最近的是1,故选:B.2.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A. B. C. D.【答案】C【解析】【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.详解】解:,故选:C.4.若,则下列结论一定正确的是()A. B. C. D.【答案】D【解析】【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:,A、,故错误,该选项不合题意;B、,故错误,该选项不合题意;C、无法得出,故错误,该选项不合题意;D、,故正确,该选项符合题意;故选:D.5.如图,,若,,则的度数为()A. B. C. D.【答案】B【解析】【分析】题目主要考查平行线的性质求角度,根据题意得出,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵,,∴,∴,∵,∴,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁 B.乙、戊 C.丙、丁 D.丙、戊【答案】C【解析】【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C.7.如图,点A为反比例函数图象上的一点,连接,过点O作的垂线与反比例的图象交于点B,则的值为()A. B. C. D.【答案】A【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,三角形相似的判定和性质,数形结合是解题的关键.过A作轴于C,过B作轴于D,证明,利用相似三角形的面积比等于相似比的平方求解即可.【详解】解:过A作轴于C,过B作轴于D,∴,,,∵,∴,∴,∴,即,∴(负值舍去),故选:A.8.如图,矩形中,,,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿,向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则的最大值为()A. B. C.2 D.1【答案】D【解析】【分析】连接,交于点,取中点,连接,根据直角三角形斜边中线的性质,可以得出的轨迹,从而求出的最大值.【详解】解:连接,交于点,取中点,连接,如图所示:∵四边形是矩形,∴,,,∴在中,,∴,∵,,在与中,,,,,共线,,是中点,∴在中,,的轨迹为以为圆心,为半径即为直径的圆弧.∴的最大值为的长,即.故选:D.【点睛】本题主要考查了矩形的性质、动点轨迹、与圆有关的位置关系等知识,根据矩形的性质以及直角三角形斜边中线的性质确定的轨迹是本题解题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.计算:___________.【答案】【解析】【分析】利用同底数幂的乘法解题即可.【详解】解:,故答案为:.【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若,则______.【答案】4【解析】【分析】本题考查了求代数式的值,把整体代入化简计算即可.【详解】解:∵,∴,故答案:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.【答案】【解析】【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.【详解】解:∵转盘被分成八个面积相等的三角形,其中阴影部分占3份,∴指针落在阴影区域的概率为,故答案为:.12.如图,是的内接三角形,若,则______.【答案】##62度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,连接,利用等腰三角形的性质,三角形内角和定理求出的度数,然后利用圆周角定理求解即可.【详解】解:连接,∵,,∴,∴,∴,故答案为:.13.直线与x轴交于点A,将直线绕点A逆时针旋转,得到直线,则直线对应的函数表达式是______.【答案】【解析】【分析】根据题意可求得与坐标轴的交点A和点B,可得,结合旋转得到,则,求得,即有点C,利用待定系数法即可求得直线的解析式.【详解】解:依题意画出旋转前的函数图象和旋转后的函数图象,如图所示∶设与y轴的交点为点B,令,得;令,即,∴,,∴,,即∵直线绕点A逆时针旋转,得到直线,∴,,∴,则点,设直线的解析式为,则,解得,那么,直线的解析式为,故答案为:.【点睛】本题主要考查一次函数与坐标轴的交点、直线的旋转、解直角三角形以及待定系数法求一次函数解析式,解题的关键是找到旋转后对应的直角边长,即可利用待定系数法求得解析式.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是的内心,若,则花窗的周长(图中实线部分的长度)______.(结果保留)【答案】【解析】【分析】题目主要考查正多边形与圆,解三角形,求弧长,过点C作,根据正多边形的性质得出为等边三角形,再由内心的性质确定,得出,利用余弦得出,再求弧长即可求解,熟练掌握这些基础知识点是解题关键.【详解】解:如图所示:过点C作,∵六条弧所对应弦构成一个正六边形,∴,∴为等边三角形,∵圆心C恰好是的内心,∴,∴,∵,∴,∴,∴的长为:,∴花窗的周长为:,故答案为:.15.二次函数的图象过点,,,,其中m,n为常数,则的值为______.【答案】##【解析】【分析】本题考查了待定系数法求二次函数解析式,把A、B、D的坐标代入,求出a、b、c,然后把C的坐标代入可得出m、n的关系,即可求解.【详解】解:把,,代入,得,解得,∴,把代入,得,∴,∴,故答案为:.16.如图,,,,,点D,E分别在边上,,连接,将沿翻折,得到,连接,.若的面积是面积的2倍,则______.【答案】##【解析】【分析】本题考查了相似三角形的判定与性质、折叠性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形的面积公式等知识,是综合性强的填空压轴题,熟练掌握相关知识的联系与运用是解答的关键.设,,根据折叠性质得,,过E作于H,设与相交于M,证明得到,进而得到,,证明是等腰直角三角形得到,可得,证明得到,则,根据三角形的面积公式结合已知可得,然后解一元二次方程求解x值即可.【详解】解:∵,∴设,,∵沿翻折,得到,∴,,过E作于H,设与相交于M,则,又,∴,∴,∵,,,∴,∴,,则,∴是等腰直角三角形,∴,则,∴,在和中,,∴,∴,,∴,,∵的面积是面积的2倍,∴,则,解得,(舍去),即,故答案为:.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.计算:.【答案】2【解析】【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式.18.解方程组:.【答案】【解析】【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:得,,解得,.将代入①得.方程组的解是19.先化简,再求值:.其中.【答案】,【解析】【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】解:原式.当时,原式.20.如图,中,,分别以B,C为圆心,大于长为半径画弧,两弧交于点D,连接,,,与交于点E.(1)求证:;(2)若,,求的长.【答案】(1)见解析(2)【解析】【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关键是:(1)直接利用证明即可;(2)利用全等三角形的性质可求出,利用三线合一性质得出,,在中,利用正弦定义求出,即可求解.【小问1详解】证明:由作图知:.在和中,.【小问2详解】解:,,.又,,.,,.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【答案】(1)(2)【解析】【分析】本题考查了利用画树状图或列表的方法求两次事件的概率,解题的关键是:(1)用标有“夏”书签的张数除以书签的总张数即得结果;(2)利用树状图画出所有出现的结果数,再找出1张为“春”,1张为“秋”的结果数,然后利用概率公式计算即可.【小问1详解】解:∵有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴恰好抽到“夏”的概率为,故答案为:;【小问2详解】解:用树状图列出所有等可的结果:等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春),(夏,秋),(夏,冬),(秋,春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋).在12个等可能的结果中,抽取的书签1张为“春”,1张为“秋”出现了2次,P(抽取的书签价好1张为“春”,张为“秋”).22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【解析】【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.【小问1详解】解:总人数为,D组人数为,补图如下:【小问2详解】解:,故答案为:72;【小问3详解】解:(人).答:本校七年级800名学生中选择项目B(乒乓球)的人数约为240人.23.图①是某种可调节支撑架,为水平固定杆,竖直固定杆,活动杆可绕点A旋转,为液压可伸缩支撑杆,已知,,.(1)如图②,当活动杆处于水平状态时,求可伸缩支撑杆的长度(结果保留根号);(2)如图③,当活动杆绕点A由水平状态按逆时针方向旋转角度,且(为锐角),求此时可伸缩支撑杆的长度(结果保留根号).【答案】(1)(2)【解析】【分析】本题考查了解直角三角形的应用,解题的关键是:(1)过点C作,垂足为E,判断四边形为矩形,可求出,,然后在在中,根据勾股定理求出即可;(2)过点D作,交的延长线于点F,交于点G.判断四边形为矩形,得出.在中,利用正切定义求出.利用勾股定理求出,由,可求出,,,.在中,根据勾股定理求出即可.【小问1详解】解:如图,过点C作,垂足为E,由题意可知,,又,四边形为矩形.,,,.,.在中,.即可伸缩支撑杆的长度为;【小问2详解】解:过点D作,交的延长线于点F,交于点G.由题意可知,四边形为矩形,.在中,,.,,,.,,,.在中,.即可伸缩支撑杆的长度为.24.如图,中,,,,,反比例函数的图象与交于点,与交于点E.

(1)求m,k的值;(2)点P为反比例函数图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作,交y轴于点M,过点P作轴,交于点N,连接,求面积的最大值,并求出此时点P的坐标.【答案】(1),(2)有最大值,此时【解析】【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B的坐标,然后利用待定系数法求出直线的函数表达式,把D的坐标代入直线的函数表达式求出m,再把D的坐标代入反比例函数表达式求出k即可;(2)延长交y轴于点Q,交于点L.利用等腰三角形的判定与性质可得出,设点P的坐标为,,则可求出,然后利用二次函数的性质求解即可.【小问1详解】解:,,.又,.,点.设直线的函数表达式为,将,代入,得,解得,∴直线的函数表达式为.将点代入,得..将代入,得.【小问2详解】解:延长交y轴于点Q,交于点L.

,,.轴,,.,,,.设点P的坐标为,,则,...当时,有最大值,此时.25.如图,中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论