高考数学模拟大题规范训练(17)含答案及解析_第1页
高考数学模拟大题规范训练(17)含答案及解析_第2页
高考数学模拟大题规范训练(17)含答案及解析_第3页
高考数学模拟大题规范训练(17)含答案及解析_第4页
高考数学模拟大题规范训练(17)含答案及解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学大题规范训练(17)15.如图,已知多面体均垂直于平面.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.16.已知等差数列的前项和为,且.(1)求数列的通项公式;(2)数列满足,令,求证:.17.已知抛物线,直线垂直于轴,与交于两点,为坐标原点,过点且平行于轴直线与直线交于点,记动点的轨迹为曲线.(1)求曲线的方程;(2)点在直线上运动,过点作曲线的两条切线,切点分别为,在平面内是否存在定点,使得?若存在,请求出定点的坐标;若不存在,请说明理由.18.现有甲、乙、丙三个工厂生产某种相同的产品进入市场,已知甲、乙、丙三个工厂生产的产品能达到优秀等级的概率分别为,,,现有某质检部门,对该产品进行质量检测,首先从三个工厂中等可能地随机选择一个工厂,然后从该工厂生产的产品抽取一件进行检测.(1)若该质检部门的一次抽检中,测得的结果是该件产品为优秀等级,求该件产品是从乙工厂抽取的概率;(2)因为三个工厂的规模大小不同,假设三个工厂进入市场的产品的比例为2∶1∶1,若该质检部门从已经进入市场的产品中随机抽取10件产品进行检测,求能达到优秀等级的产品的件数的分布列及数学期望.19.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:1.证明当()时命题成立;2.假设(,且)时命题成立,推导出在时命题也成立.用模取余运算:表示“整数除以整数,所得余数为整数”.用带余除法可表示为:被除数=除数×商+余数,即,整数是商.如,则;再如,则.当时,则称整除.现从序号分别为,,,,…,的个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到()时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为.如表示当只有1个人时幸运者就是;表示当有6个人而时幸运者是;表示当有6个人而时幸运者是.(1)求;(2)当时,,求;当时,解释上述递推关系式的实际意义;(3)由(2)推测当()时,的结果,并用数学归纳法证明.

高三数学大题规范训练(17)15.如图,已知多面体均垂直于平面.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.【答案】(Ⅰ)证明见解答;(Ⅱ).【解答】【分析】(Ⅰ)方法一:通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论;(Ⅱ)方法一:找出直线AC1与平面ABB1所成的角,再在直角三角形中求解即可.【详解】(Ⅰ)[方法一]:几何法由得,所以,即有.由,得,由得,由,得,所以,即有,又,因此平面.[方法二]:向量法如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此,由得;由得,所以平面.(Ⅱ)[方法一]:定义法如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.由得,所以,故.因此,直线与平面所成的角的正弦值是.[方法二]:向量法设直线与平面所成的角为.由(I)可知,设平面的法向量.由即,可取,所以.因此,直线与平面所成的角的正弦值是.[方法三]:【最优解】定义法+等积法设直线与平面所成角为,点到平面距离为d(下同).因为平面,所以点C到平面的距离等于点到平面的距离.由条件易得,点C到平面的距离等于点C到直线的距离,而点C到直线的距离为,所以.故.[方法四]:定义法+等积法设直线与平面所成的角为,由条件易得,所以,因此.于是得,易得.由得,解得.故.[方法五]:三正弦定理的应用设直线与平面所成的角为,易知二面角的平面角为,易得,所以由三正弦定理得.[方法六]:三余弦定理的应用设直线与平面所成的角为,如图2,过点C作,垂足为G,易得平面,所以可看作平面的一个法向量.结合三余弦定理得.[方法七]:转化法+定义法如图3,延长线段至E,使得.联结,易得,所以与平面所成角等于直线与平面所成角.过点C作,垂足为G,联结,易得平面,因此为在平面上的射影,所以为直线与平面所成的角.易得,,因此.[方法八]:定义法+等积法如图4,延长交于点E,易知,又,所以,故面.设点到平面的距离为h,由得,解得.又,设直线与平面所成角为,所以.【整体点评】(Ⅰ)方法一:通过线面垂直的判定定理证出,是该题的通性通法;方法二:通过建系,根据数量积为零,证出;(Ⅱ)方法一:根据线面角的定义以及几何法求线面角的步骤,“一作二证三计算”解出;方法二:根据线面角的向量公式求出;方法三:根据线面角的定义以及计算公式,由等积法求出点面距,即可求出,该法是本题的最优解;方法四:基本解题思想同方法三,只是求点面距的方式不同;方法五:直接利用三正弦定理求出;方法六:直接利用三余弦定理求出;方法七:通过直线平移,利用等价转化思想和线面角的定义解出;方法八:通过等价转化以及线面角的定义,计算公式,由等积法求出点面距,即求出.16.已知等差数列的前项和为,且.(1)求数列的通项公式;(2)数列满足,令,求证:.【答案】(1)(2)证明见解答【解答】【分析】(1)设等差数列an的首项为,公差为,由题意可得,解方程求出,即可求出数列an的通项公式;(2)由(1)可得,由累乘法可求出bn的通项公式,再由裂项相消法求解即可.【小问1详解】设等差数列an的首项为,公差为.由,得,解得:,所以.【小问2详解】由(1)知,,即,,,……,,利用累乘法可得:,也符合上式,所以.17.已知抛物线,直线垂直于轴,与交于两点,为坐标原点,过点且平行于轴的直线与直线交于点,记动点的轨迹为曲线.(1)求曲线的方程;(2)点在直线上运动,过点作曲线的两条切线,切点分别为,在平面内是否存在定点,使得?若存在,请求出定点的坐标;若不存在,请说明理由.【答案】(1)(2)存在定点【解答】【分析】(1)由相关点代入法求轨迹方程即可;(2)先由特殊位置确定定点在轴上,设定点,由相切求出切点满足的关系式,再由垂直的坐标条件求解.【小问1详解】设,则,由题意线垂直于轴,与交于两点,知,过点且平行于轴的直线方程为:,直线的方程为:,令,得,即,由得,因为在抛物线上,即,则,化简得,由题意知不重合,故,所以曲线的方程为【小问2详解】由(1)知曲线的方程为,点在直线上运动,当点在特殊位置时,两个切点关于轴对称,故要使得,则点在轴上.故设,曲线的方程为,求导得,所以切线的斜率,直线的方程为,又点在直线上,所以,整理得,同理可得,故和是一元二次方程的根,由韦达定理得,,当时,恒成立,所以存在定点,使得恒成立.18.现有甲、乙、丙三个工厂生产某种相同的产品进入市场,已知甲、乙、丙三个工厂生产的产品能达到优秀等级的概率分别为,,,现有某质检部门,对该产品进行质量检测,首先从三个工厂中等可能地随机选择一个工厂,然后从该工厂生产的产品抽取一件进行检测.(1)若该质检部门的一次抽检中,测得的结果是该件产品为优秀等级,求该件产品是从乙工厂抽取的概率;(2)因为三个工厂的规模大小不同,假设三个工厂进入市场的产品的比例为2∶1∶1,若该质检部门从已经进入市场的产品中随机抽取10件产品进行检测,求能达到优秀等级的产品的件数的分布列及数学期望.【答案】(1)(2)分布列见解答;【解答】【分析】(1)根据题意,利用全概率公式与贝叶斯公式即可得解;(2)利用全概率公式求得从市场中任抽一件产品达到优秀等级的概率,再利用二项分布的概率公式与数学期望公式即可得解.【小问1详解】设“抽的产品是优秀等级”,“产品是从甲工厂生产”,“产品是从乙工厂生产”,“产品是从丙工厂生产”,则,,则,则所以该件产品是从乙工厂抽取的概率为.【小问2详解】依题意,设从市场中任抽一件产品达到优秀等级的概率为,则,由题意可知,则,则的分布列为:012345678910故19.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:1.证明当()时命题成立;2.假设(,且)时命题成立,推导出在时命题也成立.用模取余运算:表示“整数除以整数,所得余数为整数”.用带余除法可表示为:被除数=除数×商+余数,即,整数是商.如,则;再如,则.当时,则称整除.现从序号分别为,,,,…,的个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到()时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为.如表示当只有1个人时幸运者就是;表示当有6个人而时幸运者是;表示当有6个人而时幸运者是.(1)求;(2)当时,,求;当时,解释上述递推关系式的实际意义;(3)由(2)推测当()时,的结果,并用数学归纳法证明.【答案】(1)(2),答案见解答(3),证明见解答【解答】【分析】(1)用模取余法可求结论;(2)由,,可求;从个人中选出一个幸运者时,幸运者的序号下标为,从个人中选出一个幸运者时,幸运者的序号下标为,后者的圆环可以认为是前者的圆环退出一人而形成的,可推得结论;(3)取时,分别求得,,,;可得当()时,,进而利用数学归纳法证明即可.【小问1详解】因为,所以.【小问2详解】因为,且,所以,故.当时,递推关系式的实际意义:当从个人中选出一个幸运者时,幸运者的序号下标为,而从个人中选出一个幸运者时,幸运者的序号下标为.如果把二者关联起来,后者的圆环可以认为是前者的圆环退出一人而形成的,当然还要重新排序,由于退出来的是,则原环的就成了新环的,也就是说原环序号下标要比新环的大,原环的就成了新环的.需要注意,新环序号后面一直到,如果下标加上,就会超过.如新环序号对应的是原环中的,…,新环序号对应的是原环中的.也就是说,得用新环的序号下标加上再减去,才能在原环中找到对应的序号,这就需要用模取余,即.【小问3详解】由题设可知,由(2)知:;;;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论