![中考数学二轮培优训练第21讲 直角三角中的分类讨论(原卷版)_第1页](http://file4.renrendoc.com/view12/M04/01/3B/wKhkGWeJpMKATTWMAAHDYp2N3kw632.jpg)
![中考数学二轮培优训练第21讲 直角三角中的分类讨论(原卷版)_第2页](http://file4.renrendoc.com/view12/M04/01/3B/wKhkGWeJpMKATTWMAAHDYp2N3kw6322.jpg)
![中考数学二轮培优训练第21讲 直角三角中的分类讨论(原卷版)_第3页](http://file4.renrendoc.com/view12/M04/01/3B/wKhkGWeJpMKATTWMAAHDYp2N3kw6323.jpg)
![中考数学二轮培优训练第21讲 直角三角中的分类讨论(原卷版)_第4页](http://file4.renrendoc.com/view12/M04/01/3B/wKhkGWeJpMKATTWMAAHDYp2N3kw6324.jpg)
![中考数学二轮培优训练第21讲 直角三角中的分类讨论(原卷版)_第5页](http://file4.renrendoc.com/view12/M04/01/3B/wKhkGWeJpMKATTWMAAHDYp2N3kw6325.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第21讲直角三角中的分类讨论【应对方法与策略】1、两个定点求一个动点。这种题目找点方法是过两个定点做垂线,以定长为直径画圆,简称“两个垂直一个圆”。通过这样的作图法,可以快速找到符合题意的点,这就是常说的找点。求点的方法,构造三垂直模型,根据直角两侧有相似就可以求解。2、两个动点或三个动点。因为三角形只有三个角,所以分三种情况讨论就可以了!当然有时也有直角不成立的情况。当它们分别为直角时,用相似或勾股定理求解,一般情况下,相似求解比勾股定理要简单一些。【多题一解】【一题多解】一、解答题1.(2022秋·黑龙江齐齐哈尔·八年级校考期中)如图,等边△ABC中,AB=10cm,CD=4cm.点M以3cm/s的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由点B向点A运动、它们同时出发,若点N的速度与点M的速度相等;①经过2s后,△BMN和△CDM是否全等?请说明理由.②当M,N两点的运动时间为多少秒时,△BMN恰好是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M按原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25s时,点M与点N第一次相遇,则点N的运动速度是
cm/s.(请直接写出答案)2.(2022·湖北宜昌·统考一模)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,BO=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.①求旋转角的度数;②求线段OD的长;③求∠BDC的度数.(2)如图2,点O是正方形ABCD内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCP,连接OP.当OA、OB、OC满足什么条件时,△OCP为直角三角形?3.(2022·四川南充·统考三模)如图,抛物线与轴交于、,与轴交于.是第一象限内抛物线上的一个动点.(1)求抛物线的解析式.(2)连接,,当时,求点的坐标.(3)在(2)的条件下,将抛物线沿射线方向平移个单位,平移后,的对应点分别为、,在轴上是否存在点,使是等腰直角三角形?若存在,请求出的值;若不存在,请说明理由.4.(2022·广西·统考中考真题)已知,点A,B分别在射线上运动,.(1)如图①,若,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为,连接.判断OD与有什么数量关系?证明你的结论:(2)如图②,若,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:(3)如图③,若,当点A,B运动到什么位置时,的面积最大?请说明理由,并求出面积的最大值.5.(2023春·八年级课时练习)如图,正比例函数y=x与一次函数y=ax+7的图像相交于点P(4,n),过点A(t,0)作x轴的垂线l,且0<t<4,交一次函数的图像于点B,交正比例函数的图像于点C,连接OB.(1)求a值;(2)设△OBP的面积为s,求s与t之间的函数关系式;(3)当t=2时,在正比例函数y=x与一次函数y=ax+7的图像上分别有一动点M、N,是否存在点M、N,使△CMN是等腰直角三角形,且∠CNM=90º,若存在,请直接写出点M、N的坐标;若不存在,请说明理由.6.(2022春·广西桂林·八年级校考期中)如图,Rt中,,,.点从点出发沿方向以每秒个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点,运动的时间是秒.过点作于点,连接,,.(1)求证:四边形是平行四边形;(2)当为何值时,;(3)当为何值时,为直角三角形?请说明理由.7.(2022·山东济南·山东省济南稼轩学校校考模拟预测)如图,抛物线经过点,点,且.(1)求抛物线的解析式及其对称轴;(2)如图,连接,过点作的平行线交抛物线于点,为线段上一动点,连接交抛物线于点,连接交于点,连接,的面积是否有最大值,若有,求出最大值,若无,请说明理由.(3)如图,以为直角顶点,为直角边边向右作等腰直角,将沿射线线平移得到,连接、,的周长是否有最小值,若有,求的周长的最小值,若无,请说明理由.8.(2022·全国·九年级专题练习)如图,直线y=x﹣3与x轴,y轴分别交于B、C两点.抛物线y=x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)设点P从点D出发,沿对称轴向上以每秒1个单位长度的速度匀速运动.设运动的时间为t秒.①点P在运动过程中,若∠CBP=15°,求t的值;②当t为何值时,以P,A,C为顶点的三角形是直角三角形?求出所有符合条件的t值.9.(2022秋·广东中山·九年级统考期末)如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).(1)求此抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.10.(2022·全国·九年级专题练习)在平面直角坐标系中,抛物线与x轴交于点和点B,与y轴交于点C,顶点D的坐标为.(1)直接写出抛物线的解析式;(2)如图1,若点P在抛物线上且满足,求点P的坐标;(3)如图2,M是直线BC上一个动点,过点M作轴交抛物线于点N,Q是直线AC上一个动点,当为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标11.(2020·贵州遵义·统考一模)已知抛物线经过、、三点,直线l是抛物线的对称轴.(1)求抛物线的解析式;(2)设点P是直线上的一个动点,当的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使以、、为顶点的三角形为直角三形.若存在,求出点M的坐标;若不存在,请说明理由.12.(2022秋·浙江金华·八年级统考期末)如图,在平面直角坐标系中,点O为坐标原点,直线AB与x轴、y轴分别交于点A、B.过点B的直线y=-x+b与x轴交于点C.已知A(-4,0)、C(3,0),点D为x轴上一动点,将△ABD沿BD折叠得到△EBD,直线BE与x轴交于点F.(1)求直线AB、BC的函数解析式;(2)若点D在线段AO上,且△DEF与△BFC的面积相等,求线段BD的长;(3)在点D的运动过程中,△DEF能否成为直角三角形?若能,请求出点D的坐标;若不能,请说明理由.13.(2022春·山东东营·八年级统考期末)如图1.在四边形ABCD中,,点E是CD边的中点,连接AE交对角线BD于点F,∠EDF=∠FBA,连接CF.(1)求证:四边形ABCD是矩形;(2)求△CFD的面积;(3)如图2,连接AC交BD于点O,点P为EC上一动点,连接OE、OP.将△OPD沿OP折叠得到△OPM,PM交OC于点N,当△PCN为直角三角形时,求CP的长.14.(2022秋·九年级课时练习)综合与探究如图,已知抛物线与x轴相交于点A,B(点B在点A的右侧),与y轴相交于点C,其顶点为点D,连接AC,BC.(1)求点A,B,D的坐标;(2)设抛物线的对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股东间股权转让协议
- 月嫂家政服务合同
- 广告位租赁的合同
- 设备维护服务合同
- 停车车位租赁合同
- 模具钢材采购合同
- 一儿一女夫妻离婚协议书
- 2025年日照货运从业资格证模拟考试驾考
- 2025年德州货运从业资格证模拟考试下载安装
- 电梯管理方维修方及业主方三方合同(2篇)
- 14S501-1 球墨铸铁单层井盖及踏步施工
- YB 4022-1991耐火泥浆荷重软化温度试验方法(示差-升温法)
- 胸腔积液护理查房-范本模板
- 水土保持方案中沉沙池的布设技术
- 安全生产技术规范 第25部分:城镇天然气经营企业DB50-T 867.25-2021
- 现代企业管理 (全套完整课件)
- 走进本土项目化设计-读《PBL项目化学习设计》有感
- 《网店运营与管理》整本书电子教案全套教学教案
- 教师信息技术能力提升培训课件希沃的课件
- 高端公寓住宅项目营销策划方案(项目定位 发展建议)
- 执业兽医师聘用协议(合同)书
评论
0/150
提交评论