广东医科大学《深度学习实验》2023-2024学年第一学期期末试卷_第1页
广东医科大学《深度学习实验》2023-2024学年第一学期期末试卷_第2页
广东医科大学《深度学习实验》2023-2024学年第一学期期末试卷_第3页
广东医科大学《深度学习实验》2023-2024学年第一学期期末试卷_第4页
广东医科大学《深度学习实验》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页广东医科大学

《深度学习实验》2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在自然语言处理领域,情感分析是一项重要的任务。假设要分析大量的在线商品评论,以确定消费者对产品的态度是积极、消极还是中性。在进行情感分析时,以下哪种方法可能不是最有效的?()A.基于词典的方法,通过查找预定义的情感词来判断情感倾向B.利用深度学习模型,如循环神经网络(RNN),自动学习语言的特征和模式C.仅仅依靠人工阅读和判断,不使用任何自动化的技术D.结合词向量和机器学习分类算法,如支持向量机(SVM)2、人工智能中的多模态学习旨在融合多种不同类型的数据,如图像、文本和音频。假设要开发一个能够同时理解图像和文本内容的系统,以下哪个挑战是最突出的?()A.数据的标注和对齐B.模型的训练效率C.不同模态数据的特征提取D.模型的可扩展性3、人工智能中的自动推理技术旨在让计算机能够自动进行逻辑推理和证明。假设要开发一个能够自动解决数学定理证明问题的系统,以下关于自动推理的描述,正确的是:()A.现有的自动推理技术可以轻松解决所有复杂的数学定理证明问题B.自动推理系统只需要基于固定的推理规则,不需要学习和适应新的推理模式C.结合机器学习和符号推理的方法,可以提高自动推理系统的能力和灵活性D.自动推理在人工智能中的应用范围非常有限,没有实际价值4、人工智能在医疗影像诊断中的辅助作用越来越受到重视。假设一个医生正在借助人工智能系统辅助诊断X光片,以下关于医疗影像诊断中人工智能的描述,正确的是:()A.人工智能系统的诊断结果可以完全替代医生的判断,医生无需再进行分析B.医生应该将人工智能系统的诊断结果作为唯一参考,忽略自己的临床经验C.人工智能系统可以提供辅助信息和提示,帮助医生更准确地诊断,但最终决策仍由医生做出D.医疗影像诊断中的人工智能技术还不够成熟,不能为医生提供任何有价值的帮助5、强化学习是一种通过与环境交互来学习最优策略的方法。假设有一个机器人需要通过学习在复杂的环境中行走,并且根据行走的效果获得奖励或惩罚。以下关于强化学习的描述,哪一项是不准确的?()A.智能体通过不断尝试和错误来改进策略B.奖励信号对于智能体的学习至关重要C.强化学习不需要对环境进行建模D.智能体的最终目标是最大化累积奖励6、人工智能在智能家居领域的应用不断丰富。假设一个智能家居系统要利用人工智能实现自动化控制,以下关于其应用的描述,哪一项是不正确的?()A.根据家庭成员的习惯和环境条件,自动调整灯光、温度和家电设备B.利用语音识别和自然语言处理技术,实现与用户的自然交互C.人工智能可以完全理解用户的所有需求和意图,不会出现误解D.结合传感器数据和机器学习算法,实现能源的高效管理和节约7、强化学习是另一种机器学习方法,通过与环境进行交互并根据奖励信号来学习最优策略。以下关于强化学习的叙述,不准确的是()A.强化学习中的智能体通过不断尝试不同的动作来获取最大的累积奖励B.强化学习适用于解决序列决策问题,如机器人控制和游戏策略制定C.强化学习不需要对环境有先验的了解,完全通过与环境的交互来学习D.强化学习的训练过程简单快速,通常能够在短时间内得到最优的策略8、在人工智能的自动驾驶道德决策问题中,假设自动驾驶汽车面临一个无法避免的碰撞场景,以下关于道德决策的描述,正确的是:()A.可以制定一套通用的道德规则,让自动驾驶汽车在所有情况下遵循B.道德决策应该完全由汽车制造商决定,用户没有参与的权利C.不同的文化和价值观可能导致对自动驾驶道德决策的不同看法D.自动驾驶汽车的道德决策不会受到法律和社会舆论的影响9、生成对抗网络(GAN)是一种热门的人工智能技术。假设要使用GAN生成逼真的图像,以下关于GAN的描述,正确的是:()A.GAN由一个生成器和一个判别器组成,它们相互竞争,共同提高生成效果B.生成器的目标是尽量使生成的图像与真实图像差异增大,以迷惑判别器C.判别器的能力越强,生成器生成的图像质量就越差D.GAN只能用于图像生成,不能应用于其他领域,如音频生成10、在人工智能的自动驾驶场景中,车辆需要与周围的其他车辆和基础设施进行有效的通信和协作。假设要实现车辆之间的安全、高效的信息交互,以下哪种通信技术和协议在可靠性和低延迟方面表现最为突出?()A.4G通信B.5G通信C.车联网专用短程通信(DSRC)D.Wi-Fi通信11、人工智能中的机器学习算法可以分为监督学习、无监督学习和强化学习等。假设要对一组未标记的数据进行分类,以下哪种学习算法可能最为适用?()A.监督学习中的线性回归算法,通过拟合数据的线性关系进行分类B.无监督学习中的K-Means聚类算法,自动将数据分为不同的簇C.强化学习中的Q-Learning算法,通过与环境交互学习最优策略D.以上算法都不适合对未标记数据进行分类12、在人工智能的模型评估中,需要使用多种指标来衡量模型的性能。假设评估一个分类模型,以下关于模型评估指标的描述,哪一项是不正确的?()A.准确率是正确分类的样本数占总样本数的比例,是常用的评估指标之一B.召回率衡量了被正确识别的正例在实际正例中的比例C.F1值综合考虑了准确率和召回率,是一个更全面的评估指标D.只要模型的准确率高,就说明模型在实际应用中表现良好,无需考虑其他指标13、人工智能中的知识图谱用于表示实体之间的关系和知识。假设一个知识图谱被用于智能问答系统,以下关于知识图谱的描述,正确的是:()A.知识图谱中的知识是固定不变的,不能进行更新和扩展B.知识图谱能够自动从大量文本中抽取知识,无需人工干预C.可以通过知识图谱的推理功能发现隐藏的知识和关系D.知识图谱只适用于特定领域的知识表示,通用性较差14、假设要构建一个能够自主学习并改进其性能的人工智能图像识别系统,用于识别不同种类的动物。在训练过程中,需要处理大量的图像数据,以下哪种机器学习算法可能最为适合?()A.决策树B.支持向量机C.深度学习中的卷积神经网络D.朴素贝叶斯15、在人工智能的情感分析任务中,需要判断文本所表达的情感倾向。假设要分析社交媒体上用户对某一产品的评价情感,以下关于情感分析的描述,正确的是:()A.仅仅依靠关键词匹配就能够准确判断文本的情感倾向B.深度学习模型在情感分析中总是比传统的机器学习方法更准确C.考虑文本的上下文、语义和语法结构等多方面信息,能够提高情感分析的准确性D.情感分析的结果不受文本的语言风格和表达方式的影响二、简答题(本大题共4个小题,共20分)1、(本题5分)说明人工智能在虚拟现实和增强现实中的应用。2、(本题5分)谈谈人工智能的法律责任和监管。3、(本题5分)解释人工智能在生物科学中的研究方向。4、(本题5分)解释人工智能在智能仓储库存控制中的策略。三、操作题(本大题共5个小题,共25分)1、(本题5分)利用Python的Scikit-learn库,实现随机森林分类算法对信用风险评估问题进行处理。分析特征的重要性,建立有效的信用评估模型。2、(本题5分)利用TensorFlow构建一个异常检测模型,对工业传感器数据中的异常值进行检测,如设备故障、生产流程异常等。分析模型的检测灵敏度和误报率,研究如何提高模型对复杂异常模式的识别能力。3、(本题5分)使用机器学习算法对交通流量数据进行预测,为交通管理和规划提供决策支持。4、(本题5分)基于Python的Scikit-learn库,使用逻辑回归算法对一个信用卡交易数据集进行欺诈检测。通过特征选择和模型评估指标,优化模型的检测性能。5、(本题5分)利用Python的Keras库,实现一个基于门控循环单元(GRU)的自然语言处理模型,用于情感分析。对大量的影评数据进行训练,判断影评的情感倾向是积极还是消极。四、案例分析题(本大题共4个小题,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论