巧用数形结合思想解二次函数中的问题_第1页
巧用数形结合思想解二次函数中的问题_第2页
巧用数形结合思想解二次函数中的问题_第3页
巧用数形结合思想解二次函数中的问题_第4页
巧用数形结合思想解二次函数中的问题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

巧用数形结合思想解二次函数中的问题摘要:数形结合就是把抽象的数学语言与直观的图形结合起来。通过数与形之间的对应和转化来解决数学问题,数形结合思想通过“以形助数,以数解形”两个方面,已经成为当今数学的特色之一,它使复杂问题简单化,抽象问题具体化,变抽象思维为形象思维,有助于把握数学问题的本质。它兼有数的严谨与形的直观,是优化解题过程的重要途径之一,是一种基本的数学方法。本文通过例题分析了解“数形结合思想”来解决二次函数中的问题,因为此类问题的特点是若仅进行代数推理,亦能解决,但运算繁、技巧强、难度大若以形助数,则运算简、技巧弱、难度小。关键词:数形结合思想二次方程和不等式二次函数由于初中的“二次函数”的问题,历年来都是中考的热点,因此,我从用“数形结合”思维思想来谈一谈这些问题。一、数形结合思想概述法国著名的自然辨证哲学家恩格斯曾经说过“数学是研究现实生活中数量关系和空间形式的数学”。数学中两大研究对象“数”与“形”的矛盾统一是数学发展的内在因素,数形结合是贯穿于数学发展历史长河中的一条主线,并且使数学在实践中的应用更加广泛和深入。一方面。借助于图形的性质可以将许多抽象的数学概念和数量关系形象化、简单化,给人以直觉的启示。另一方面,将图形问题转化为代数问题,以获得精确的结论。这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简洁明快,而且可以大大开拓我们的解题思路,为研究和探求数学问题开辟一条重要的途径.因此,数形结合不应仅仅作为一种解题方法.而应作为一种重要的数学思想,它是将知识转化为能力的“桥”。而课堂教学中多媒体的应用更有利于体现数形结合的数学思想方法。有利于突破教学难点,有利于动态地显示给定的几何关系,营造愉快的课堂教学气氛,激发学生的学习兴趣,使学生喜欢数学,爱学数学.“数”与“形”作为数学中最古老最重要的两个方面.一直就是一对矛盾体。正如矛和盾总是同时存在一样.有“数”必有“形”,有“形”必有“数”。华罗庚先生曾说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微.数形结合百般好,隔离分家万事休。切莫忘,几何代数统一体。永远联系.切莫分离!”寥寥数语,把数形之妙说得淋漓尽致.“数形结合”作为数学中的一种重要思想,它在初、高中都是解决许多问题得重要思想,特别是在高中数学中占有极其重要的地位,关于这一点,我们只要翻阅近年高考试卷就可以一目了然。在多年来的高考题中,数形结合应用广泛.大多是“以形助数”,比较常见的是在解方程和不等式、求函数的最值问题、求复数和三角函数等问题中,与此同时“数形结合”思想在二次函数中的应用在中、高考命题中解决问题也成了必不可少的部分,也是平时学习二次函数解决应用问题的一个重点。巧妙运用“数形结合”思想解题.可以化抽象为具体,达到事半功倍的效果。二、二次函数与系数之间的关系,,00cf(0)10b020c所以b2c5b0c2①②③④。由①、②、④得20c≤b≤100,0<c<5,所以当c=1时,有②、③得:0<b<6且b2≥20,得b=5;2当c=2时,0<b<7且b≥40,此时b无整数解;当c=3时,0<b<8且b2≥60,此时b无整数解;当c=4时,0<b<9且b2≥80,此时b无整数解;所以b=5,c=10。四、数形结合可以求得平移后的抛物线解析式,比较函数值的大小。例1:如图2,把此抛物线线绕顶点旋转180°,则该抛物线对应的解析式为:。若把新的抛物线再向右平移2个单位,向下平移3个单位,则此时抛物线对应的函数解析式为:。解:1、由于是绕顶点旋转180°,所以顶点的坐标不变,对称轴不变,所以设原抛物线的解析式为:Y=a(x+1)2+4,又因为过了A点(1,0),带入解析式得到:a=-1,所以原函数的解析式为:Y=-(x+1)2+4,故绕顶点旋转180°后,只有开口变了,所以新函数的解析式为:Y=(x+1)2+4。2、因为抛物线图象的平移本质上是把握点的平移。只要把握好规律,结合图形的变换,做到做“+”右“-”,上“-”下“+”这样就很容易得到此时的函2数解析式:Y=(x-1)-1。例2:若A(-1,y1),B(-2,y2)是抛物线上y=a(x-1)2+c(a>0)上的两点,则y1<y2(填<,>或=)。变式1:若A(-1,y1),B(4,y2)是抛物线上y=a(x-1)2+c(a>0)上的两点,则y1<y2(填<,>或=)。变式2:若A(m,y1),B(m+2,y2)是抛物线上2y=a(x-1)+c(a>0)上的两点,当m取何值时,y1=y2?y1>y2?解:因为a>0,开口向上,又从图中看到x=1是函数的对称轴,又因为函数图象与y轴的交点在y轴的负方向,所以c<0,所以得出:当x≥1时,y随x的增大而增大;当x<0时,y随x的增大而减小。因此:(1)因为-2<-1<0,所以y1<y2;(2)因为-1<0<4,所以y1<y2;(3)要使y1=y2,则|x1-x2|=1,即是x1、x2关于x=1对称,所以就有:m-(m-2)=1,解得:m∈R,所以无论m取何值,y1=y2;很明显m<m+2,要得到y1>y2,从图像可知:在对称轴的右侧,则只要m≥1就行。五、从函数的“形”到方程的“数”,使推理判断更准确例1.如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图像的一部分,如果他的出手处A距地面的距离OA为1m,球路的最高点B(8,9),则这个二次函数的表达式为,小孩将球抛出了约米(精确到0.1m)。解:由题意和图像可可知,设二次函数的解析式为:y=a(x-8)2+9,将点A(0,1)代入,得a=-1/8。所以该二次函数的解析式为:y=-1/8(x-8)2+9=-1/8x2+2x+1,令y=0,则有-1/8x2+2x+1=0,解得:62,62,所以C(88A0),x16.5(米)O628OC注:从“形”到“数”的问题时,应注意观察函数图像的形状特征,充分挖掘图像的已知条件,确定函数的解析式,从而利用函数的性质来解。六、“数形结合”在二次函数中的综合应用例1:市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量v(千克)与销售单价x(元)(x≥30)存在如下图所示的一次函数关系式。(1)试求出v与x的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元.现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围。解:(1)设y=kx+b,由图像可知,1000b200b40k-20,解得k400b30k所以一次函数的表达式为:y=-20x+1000,(30≤x≤50)。(2)p=(x-20)y=(x-20)(-20x+lO00)=-20x2+1400x-20000又因为a=一20<0,所以P有最大值。(或通过配方,P一20(x一35)+4500,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元。(3)因为4180≤-20(x-35)+4500≤4480,1≤(x一35)≤16,所以31≤x≤34或36≤x≤39。注:在解决二次函数问题时,要注意“由数想形,以形助数”的方法,充分挖掘题目中的已知条件,从而创造性地解决问题。(-20)14004500元235时,pmax当x七、结语在学习二次函数中“数”、“形”并进,让学生见“数”想到“形”。见“形”不忘“数”。在数形转化结合的过程中,必须遵循下述原则:转化等价原则;数形互补原则;求解简单原则。当然在在用数形结合的思想解决“二次函数”中的问题时,还应掌握以下几点:1.善于观察图形,以揭示图形中蕴含的数量关系。2.正确绘制图形,以反映图形中相应的数量关系。3.切实把握“数”与“形”的对应关系,以图识性,以性识图。总之,二次函数的问题,在数形结合中来解决就显得不是那么的难,都是“二次方程、不等式”的“数”与二次函数的“形”之间相互转化的。数与形的结合就是解决二次函数,以及所有函数问题得一双慧眼。参考文献:[1]姚立新.数形结合的数学思想方法在解题中的应用[J],2005,1.[2]蔡东兴.数形结合思想方法的应用[J].中学数学教与学,2009,2.[

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论