安徽省安庆市白泽湖中学2024届高三第二学期试题_第1页
安徽省安庆市白泽湖中学2024届高三第二学期试题_第2页
安徽省安庆市白泽湖中学2024届高三第二学期试题_第3页
安徽省安庆市白泽湖中学2024届高三第二学期试题_第4页
安徽省安庆市白泽湖中学2024届高三第二学期试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省安庆市白泽湖中学2023届高三第二学期试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元2.复数(为虚数单位),则的共轭复数在复平面上对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.4.若函数满足,且,则的最小值是()A. B. C. D.5.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体6.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.7.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.8.函数的图像大致为().A. B.C. D.9.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A. B. C. D.10.已知全集,集合,则=()A. B.C. D.11.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)12.若复数z满足,则复数z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.若满足,则目标函数的最大值为______.14.已知三棱锥的四个顶点都在球的球面上,,则球的表面积为__________.15.若,则的最小值是______.16.已知正方体ABCD-A1B1C1D1棱长为2,点P是上底面三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱椎中,四边形为菱形,,,,,,分别为,中点..(1)求证:;(2)求平面与平面所成锐二面角的余弦值.18.(12分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.19.(12分)如图,底面ABCD是边长为2的菱形,,平面ABCD,,,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.20.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.(1)求证:OE∥平面PBC;(2)求三棱锥E﹣PBD的体积.21.(12分)4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如下:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量的分布列和数学期望.22.(10分)若关于的方程的两根都大于2,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.2.C【解析】

由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【详解】解析:,,对应点为,在第三象限.故选:C.【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.3.B【解析】

根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.4.A【解析】

由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.【详解】函数满足,,即,,,,即,,则,由基本不等式得,当且仅当时,等号成立.,由于函数在区间上为增函数,所以,当时,取得最小值.故选:A.【点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.5.C【解析】

根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.6.B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.7.B【解析】

由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,,故判断框中应填?故选:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.A【解析】

本题采用排除法:由排除选项D;根据特殊值排除选项C;由,且无限接近于0时,排除选项B;【详解】对于选项D:由题意可得,令函数,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.9.A【解析】

根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意,,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.10.D【解析】

先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.11.D【解析】

求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.12.A【解析】

化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.-1【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,化目标函数为,由图可得,当直线过点时,直线在轴上的截距最大,由得即,则有最大值,故答案为.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.【解析】

如图所示,将三棱锥补成长方体,球为长方体的外接球,长、宽、高分别为,计算得到,得到答案.【详解】如图所示,将三棱锥补成长方体,球为长方体的外接球,长、宽、高分别为,则,所以,所以球的半径,则球的表面积为.故答案为:.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力,将三棱锥补成长方体是解题的关键.15.8【解析】

根据,利用基本不等式可求得函数最值.【详解】,,当且仅当且,即时,等号成立.时,取得最小值.故答案为:【点睛】本题考查基本不等式,构造基本不等式的形式是解题关键.16.π.【解析】

设三棱锥P-ABC的外接球为球O',分别取AC、A1C1的中点O、O1,先确定球心O'在线段AC和A1C1中点的连线上,先求出球O【详解】如图所示,设三棱锥P-ABC的外接球为球O'分别取AC、A1C1的中点O、O1由于正方体ABCD-A则△ABC的外接圆的半径为OA=2设球O的半径为R,则4πR2=所以,OO则O而点P在上底面A1B1由于O'P=R=41因此,点P所构成的图形的面积为π×O【点睛】本题考查三棱锥的外接球的相关问题,根据立体几何中的线段关系求动点的轨迹,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【解析】

(1)证明,得到平面,得到证明.(2)以点为坐标原点,建立如图所示的空间直角坐标系,平面的一个法向量为,平面的一个法向量为,计算夹角得到答案.【详解】(1)因为四边形是菱形,且,所以是等边三角形,又因为是的中点,所以,又因为,,所以,又,,,所以,又,,所以平面,所以,又因为是菱形,,所以,又,所以平面,所以.(2)由题意结合菱形的性质易知,,,以点为坐标原点,建立如图所示的空间直角坐标系,则,,,,,设平面的一个法向量为,则:,据此可得平面的一个法向量为,设平面的一个法向量为,则:,据此可得平面的一个法向量为,,平面与平面所成锐二面角的余弦值.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.18.(1)见详解;(2).【解析】

(1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2)在图中找到对应的平面角,再求此平面角即可.于是考虑关于的垂线,发现此垂足与的连线也垂直于.按照此思路即证.【详解】(1)证:,,又因为和粘在一起.,A,C,G,D四点共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得证.(2)过B作延长线于H,连结AH,因为AB平面BCGE,所以而又,故平面,所以.又因为所以是二面角的平面角,而在中,又因为故,所以.而在中,,即二面角的度数为.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.19.(1)证明见解析;(2)【解析】

(1)要证明平面平面BDE,只需在平面内找一条直线垂直平面BDE即可;(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系,分别求出平面BEF的法向量,平面的法向量,算出即可.【详解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,设AC,BD交于O,取BE的中点G,连FG,OG,,,四边形OCFG是平行四边形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系∵BE与平面ABCD所成的角为,,,,,,.,设平面BEF的法向量为,,,设平面的法向量设二面角的大小为..【点睛】本题考查线面垂直证面面垂直、面面所成角的计算,考查学生的计算能力,解决此类问题最关键是准确写出点的坐标,是一道中档题.20.(1)证明见解析(2)【解析】

(1)连接OE,利用三角形中位线定理得到OE∥PC,即可证出OE∥平面PBC;(2)由E是PA的中点,,求出S△ABD,即可求解.【详解】(1)证明:如图所示:∵点O,E分别是AC,PA的中点,∴OE是△PAC的中位线,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD为菱形,∠BAD=60°,∴S△ABD,∴三棱锥E﹣PBD的体积.【点睛】本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论