福建师范大学《视觉传达设计史》2023-2024学年第一学期期末试卷_第1页
福建师范大学《视觉传达设计史》2023-2024学年第一学期期末试卷_第2页
福建师范大学《视觉传达设计史》2023-2024学年第一学期期末试卷_第3页
福建师范大学《视觉传达设计史》2023-2024学年第一学期期末试卷_第4页
福建师范大学《视觉传达设计史》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页福建师范大学

《视觉传达设计史》2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的目标检测中,对于小目标的检测往往具有较大的挑战性。为了提高小目标检测的准确率,以下哪种策略可能是有效的?()A.多尺度特征融合B.增加训练数据中的小目标样本C.使用更高分辨率的输入图像D.以上都是2、图像分类是计算机视觉中的常见任务之一。对于图像分类模型的训练,以下说法错误的是()A.需要大量有标注的图像数据来学习不同类别的特征B.卷积神经网络(CNN)在图像分类任务中表现出色C.模型的训练过程是不断调整参数以最小化预测误差的过程D.图像分类模型一旦训练完成,就无法再对新的类别进行学习和分类3、在计算机视觉的图像超分辨率重建中,提高低分辨率图像的清晰度。假设要将一张模糊的图像重建为清晰的高分辨率图像,以下关于图像超分辨率重建方法的描述,哪一项是不正确的?()A.基于插值的方法通过在像素之间插入新的值来增加图像的分辨率,但可能会导致图像模糊B.基于深度学习的方法能够学习低分辨率图像和高分辨率图像之间的映射关系,重建出更清晰的图像C.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制D.为了获得更好的重建效果,可以结合多种超分辨率重建方法或使用先验知识4、计算机视觉在农业领域的应用可以帮助实现精准农业。假设一个农场需要通过计算机视觉监测农作物的生长状况。以下关于计算机视觉在农业中的描述,哪一项是错误的?()A.可以检测农作物的病虫害,及时采取防治措施B.能够评估农作物的生长阶段和成熟度,指导收获时间C.计算机视觉在农业中的应用完全不受天气和光照条件的影响D.可以通过无人机搭载摄像头进行大面积的农田监测5、假设要开发一个能够对文物进行数字化保护和修复的计算机视觉系统,需要对文物的破损部分进行准确识别和重建。以下哪种技术在文物修复方面可能具有应用潜力?()A.图像修复算法B.三维重建技术C.虚拟增强现实技术D.以上都是6、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和识别。以下关于动作识别的描述,不准确的是()A.动作识别需要分析视频中的时空特征来理解动作的模式和类别B.双流卷积网络在动作识别任务中被广泛应用,分别处理空间和时间信息C.动作识别在体育分析、视频监控和智能安防等领域具有重要的应用价值D.动作识别技术已经非常成熟,能够准确识别各种复杂和细微的动作7、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响8、计算机视觉在无人驾驶飞行器(UAV)中的应用可以实现自主导航和环境感知。假设一个UAV需要在复杂的环境中飞行并避开障碍物。以下关于计算机视觉在UAV中的描述,哪一项是错误的?()A.可以通过视觉传感器获取周围环境的信息,包括地形、建筑物和其他障碍物B.能够实时分析图像,计算与障碍物的距离和相对速度,为飞行决策提供依据C.计算机视觉在UAV中的应用完全不需要与其他传感器(如惯性测量单元)的数据融合D.可以利用深度学习算法进行端到端的飞行控制,实现自主飞行9、在计算机视觉的图像风格迁移任务中,将一张图像的风格应用到另一张图像上。假设要将一幅油画的风格迁移到一张照片上,以下关于图像风格迁移方法的描述,正确的是:()A.基于手工特征提取和风格转换的方法能够实现自然逼真的风格迁移B.深度学习中的生成对抗网络(GAN)在风格迁移中无法生成多样化的风格效果C.图像的内容和风格可以完全独立地进行处理,互不影响D.考虑图像的局部和全局特征以及语义信息能够提升风格迁移的质量10、当进行视频中的动作识别时,假设要分析一段运动员训练的视频,识别出其中的各种动作,如跑步、跳跃和举重等。视频中的动作可能存在速度变化、遮挡和视角变化等问题。为了准确识别这些动作,以下哪种技术是关键的?()A.对每一帧图像进行独立的动作分类,然后综合结果B.利用光流信息来捕捉视频中的运动模式C.只关注视频中的关键帧,忽略其他帧D.不考虑视频的时序信息,将其视为一系列独立的图像11、计算机视觉中的纹理分析用于描述图像中重复出现的模式和结构。假设要对一块布料的纹理进行分析,以判断其材质和质量,同时布料可能存在褶皱和变形。以下哪种纹理分析方法在处理这种复杂情况时更为准确?()A.统计纹理分析B.结构纹理分析C.基于模型的纹理分析D.基于深度学习的纹理分析12、在计算机视觉的应用于工业检测中,需要检测产品表面的缺陷和瑕疵。假设我们要检测手机屏幕上的划痕和亮点,以下哪种方法能够实现快速、准确的缺陷检测,并且适应不同的产品批次和生产环境?()A.基于机器视觉的传统检测方法,结合阈值和形态学操作B.基于深度学习的目标检测算法,针对缺陷进行训练C.基于纹理分析和模式识别的方法D.基于光学原理和物理模型的检测方法13、计算机视觉中的图像配准任务是将不同时间、不同视角或不同传感器获取的图像进行对齐。假设要将两张拍摄角度不同的城市风景照片进行配准。以下关于图像配准方法的描述,哪一项是不正确的?()A.可以基于特征点匹配的方法,找到两张图像中的对应点,然后计算变换矩阵B.基于灰度信息的配准方法通过比较图像的像素值来实现配准C.深度学习中的自监督学习方法可以用于图像配准,自动学习图像之间的对应关系D.图像配准总是能够达到像素级别的精确对齐,不存在任何误差14、在计算机视觉的视觉跟踪与监控应用中,需要对特定目标进行持续的跟踪和监测。假设要对一个在大型商场中移动的可疑人员进行跟踪,同时要应对人群遮挡和环境变化。以下哪种视觉跟踪与监控技术在这种情况下能够提供更可靠的跟踪结果?()A.多目标跟踪算法B.基于深度学习的单目标跟踪C.基于粒子滤波的跟踪D.基于特征匹配的跟踪15、计算机视觉中的虚拟现实(VR)和增强现实(AR)应用需要实时生成逼真的视觉效果。假设要在一个VR游戏中为玩家提供沉浸式的视觉体验,或者在AR应用中准确地将虚拟物体与现实场景融合。以下哪种计算机视觉技术在实现这些效果时至关重要?()A.实时渲染技术B.空间定位与追踪技术C.三维重建与建模技术D.以上技术综合应用16、在计算机视觉的图像特征提取中,假设要提取对光照、旋转和缩放具有不变性的特征。以下关于特征提取方法的描述,正确的是:()A.SIFT特征具有良好的不变性,但计算复杂度高,实时性差B.HOG特征对光照变化适应性强,但对旋转和缩放较敏感C.LBP特征能够快速提取,但特征表达能力有限D.没有一种特征提取方法能够同时满足对光照、旋转和缩放的不变性要求17、计算机视觉中的图像超分辨率技术用于提高图像的分辨率。假设要将一张低分辨率的图像恢复成高分辨率图像,以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的图像超分辨率方法能够生成清晰逼真的高分辨率图像B.深度学习中的生成对抗网络(GAN)在图像超分辨率任务中无法发挥作用C.图像超分辨率的效果不受原始低分辨率图像的质量和内容的限制D.结合先验知识和深度学习的方法可以改善图像超分辨率的效果18、计算机视觉中的视频理解任务包括对视频内容的分析和解释。假设要理解一段新闻视频的主要内容和事件发展。以下关于视频理解的描述,哪一项是不正确的?()A.可以通过对视频中的帧进行分类、目标检测和跟踪来实现视频理解B.深度学习中的注意力机制可以帮助聚焦视频中的关键信息,提高理解的准确性C.视频理解只需要关注视觉信息,不需要考虑音频和文字等其他模态的信息D.可以结合知识图谱和语义理解技术,对视频中的内容进行更深入的分析和解释19、在计算机视觉的图像增强任务中,旨在改善图像的质量。假设一张低光照条件下拍摄的照片需要增强。以下关于图像增强方法的描述,哪一项是错误的?()A.可以通过直方图均衡化方法增强图像的对比度B.基于滤波的方法能够去除图像中的噪声,同时增强细节C.图像增强可以无限制地提高图像的质量,不存在过度增强的问题D.深度学习中的生成对抗网络(GAN)也可以用于图像增强20、在计算机视觉的图像生成任务中,假设要生成逼真的人脸图像。以下关于生成模型的架构选择,哪一项是需要特别关注的?()A.选择传统的多层感知机(MLP)架构B.采用生成对抗网络(GAN)架构,通过对抗训练生成高质量图像C.运用卷积神经网络(CNN)架构,但不使用池化层D.构建循环神经网络(RNN)架构,处理图像的序列信息21、在计算机视觉的图像检索任务中,需要根据用户提供的示例图像从大规模图像数据库中找到相似的图像。假设要构建一个高效的图像搜索引擎,能够快速准确地返回相关图像。以下哪种图像检索方法在处理大规模数据时性能更优?()A.基于内容的图像检索B.基于文本标注的图像检索C.基于哈希编码的图像检索D.基于深度学习特征的图像检索22、在计算机视觉中,特征提取是非常关键的一步。假设我们要从图像中提取有意义的特征,用于后续的处理和分析,以下关于特征提取方法的描述,哪一项是不正确的?()A.SIFT(尺度不变特征变换)和SURF(加速稳健特征)是常用的局部特征描述子,对图像的旋转、缩放和光照变化具有一定的不变性B.HOG(方向梯度直方图)特征通过计算图像局部区域的梯度方向分布来描述图像,常用于行人检测C.深度学习中的自动特征提取,例如通过卷积神经网络学习到的特征,比手工设计的特征更具有代表性和判别力D.特征提取的结果对后续的图像处理任务影响不大,不同的特征提取方法可以得到相似的处理效果23、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设一个工厂需要检测生产线上的零件是否存在缺陷。以下关于工业检测中的计算机视觉的描述,哪一项是不准确的?()A.能够快速准确地检测出零件的表面缺陷、尺寸偏差等问题B.可以通过机器视觉系统对零件进行自动分类和筛选C.工业检测中的计算机视觉系统需要高度的稳定性和可靠性,对环境变化不敏感D.计算机视觉在工业检测中的应用已经非常成熟,不需要人工干预和校验24、图像超分辨率是指从低分辨率图像生成高分辨率图像。假设我们有一张模糊的低分辨率老照片,想要将其清晰化并提高分辨率。以下哪种图像超分辨率方法能够生成更逼真的细节和更清晰的边缘?()A.基于插值的方法,如双线性插值B.基于重建的方法,如基于字典学习的方法C.基于深度学习的方法,如SRCNND.基于小波变换的方法25、图像分类是计算机视觉的常见任务之一。假设要对大量的自然风景图片进行分类,如山脉、森林、海滩等。在进行图像分类时,以下关于数据增强的方法,哪一项可能不太有效?()A.对图像进行随机裁剪和旋转,增加数据的多样性B.改变图像的色彩和对比度,模拟不同的拍摄条件C.直接复制原图像,增加数据量D.给图像添加随机噪声,增强模型的鲁棒性二、简答题(本大题共4个小题,共20分)1、(本题5分)描述计算机视觉在海洋地质灾害防治中的应用。2、(本题5分)描述计算机视觉在海洋经济发展中的应用。3、(本题5分)描述计算机视觉在地下水监测中的应用。4、(本题5分)说明计算机视觉在环境监测中的作用。三、分析题(本大题共5个小题,共25分)1、(本题5分)以可口可乐的限量版包装设计为例,分析其如何通过创意设计吸引消费者收藏,提升品牌的话题性和影响力。2、(本题5分)解析某科技公司的科技产品体验店设计,探讨其如何通过视觉效果、产品展示和互动体验展示公司的科技实力和创新精神,吸引消费者的购买。3、(本题5分)某慈善晚宴的邀请函设计以精致的手工制作和感人的慈善故事为特色。请剖析此邀请函设计如何邀请到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论