高等数学B第四章第三节定积分的换元积分法与分部积分法知识课件_第1页
高等数学B第四章第三节定积分的换元积分法与分部积分法知识课件_第2页
高等数学B第四章第三节定积分的换元积分法与分部积分法知识课件_第3页
高等数学B第四章第三节定积分的换元积分法与分部积分法知识课件_第4页
高等数学B第四章第三节定积分的换元积分法与分部积分法知识课件_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

由牛顿——莱布尼兹公式,可以通过不定积分来计算定积分.一般是将定积分的计算截然分成两步:先计算相应的不定积分,然后再运用牛顿——莱布尼兹公式代值计算出定积分.这种作法相当麻烦,我们希望将不定积分的计算方法与牛顿——莱布尼兹公式有机地结合起来,构成定积分自身的计算方法——定积分的换元法和定积分的分部积分法.第三节定积分的换元积分法与分部积分法例1解例1解有什么想法没有?一、定积分的换元法定理证证毕说明:1)当

<

,即区间换为定理1仍成立.2)必需注意换元必换限,原函数中的变量不必代回.3)换元公式也可反过来使用,即或配元配元不换限例2解例3解例4解例5解解所以平均值等于例6解令原式例7证利用函数的对称性,有时可简化计算.yxoyxo奇函数奇函数奇函数例9例11证证(1)例12证(2)令例12证(3)令并计算

例12解令则两边求导,即再求导,得例13二、定积分的分部积分法定理证明与不定积分的情形类似.例14解什么情况下运用分部积分法呢?定积分与不定积分的情形相同!例15解计算解令原式则解得与换元法结合.例16解计算积分其中采用分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论