下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Feature
HOWCLOSEISAI
N-?EL
LargelanguagemodelssuchasOpenAI’so1have
electrifiedthedebateoverachievingartificialgeneralintelligence.Buttheyareunlikelytoreachthis
milestoneontheirown.ByAnilAnanthaswamy
O
penAI’slatestartificialintelligence(AI)systemdroppedinSeptemberwithaboldpromise.Thecom-panybehindthechatbotChatGPTshowcasedo1—itslatestsuiteoflargelanguagemodels(LLMs)—ashavinga“newlevelofAIcapability”.OpenAI,whichisbasedinSanFran-
cisco,California,claimsthato1worksinawaythatisclosertohowapersonthinksthandopreviousLLMs.
Thereleasepouredfreshfuelonadebatethat’sbeensimmeringfordecades:justhowlongwillitbeuntilamachineiscapableofthewholerangeofcognitivetasksthathumanbrainscanhandle,includinggeneralizingfromonetasktoanother,abstractreasoning,plan-ningandchoosingwhichaspectsoftheworldtoinvestigateandlearnfrom?
Suchan‘artificialgeneralintelligence’,orAGI,couldtacklethornyproblems,includingclimatechange,pandemicsandcuresforcan-cer,Alzheimer’sandotherdiseases.Butsuchhugepowerwouldalsobringuncertainty—andposeriskstohumanity.“Badthingscould
happenbecauseofeitherthemisuseofAIorbecausewelosecontrolofit,”saysYoshuaBengio,adeep-learningresearcherattheUniversityofMontreal,Canada.
TherevolutioninLLMsoverthepastfewyearshaspromptedspeculationthatAGImightbetantalizinglyclose.ButgivenhowLLMsarebuiltandtrained,theywillnotbesufficienttogettoAGIontheirown,someresearcherssay.“Therearestillsomepiecesmissing,”saysBengio.
What’sclearisthatquestionsaboutAGIarenowmorerelevantthanever.“Mostofmylife,IthoughtpeopletalkingaboutAGIarecrack-pots,”saysSubbaraoKambhampati,acomputerscientistatArizonaStateUniversityinTempe.“Now,ofcourse,everybodyistalkingaboutit.Youcan’tsayeverybody’sacrackpot.”
WhytheAGIdebatechanged
Thephraseartificialgeneralintelligenceenteredthezeitgeistaround2007afteritsmentioninaneponymouslynamedbookeditedbyAIresearchersBenGoertzelandCassioPennachin.Itsprecisemeaningremains
elusive,butitbroadlyreferstoanAIsystemwithhuman-likereasoningandgeneralizationabilities.Fuzzydefinitionsaside,formostofthehistoryofAI,it’sbeenclearthatwehaven’tyetreachedAGI.TakeAlphaGo,theAIprogramcreatedbyGoogleDeepMindtoplaytheboardgameGo.Itbeatstheworld’sbesthumanplay-ersatthegame—butitssuperhumanqualitiesarenarrow,becausethat’sallitcando.
ThenewcapabilitiesofLLMshaveradicallychangedthelandscape.Likehumanbrains,LLMshaveabreadthofabilitiesthathavecausedsomeresearcherstoseriouslycon-sidertheideathatsomeformofAGImightbeimminent1,orevenalreadyhere.
Thisbreadthofcapabilitiesisparticularlystartlingwhenyouconsiderthatresearch-ersonlypartiallyunderstandhowLLMsachieveit.AnLLMisaneuralnetwork,amachine-learningmodellooselyinspiredbythebrain;thenetworkconsistsofartificialneurons,orcomputingunits,arrangedinlay-ers,withadjustableparametersthatdenotethestrengthofconnectionsbetweentheneurons.Duringtraining,themostpowerful
22|Nature|Vol636|5December2024
ILLUSTRATIONBYPETRAPÉTERFFY
LLMs—suchaso1,Claude(builtbyAnthropicinSanFrancisco)andGoogle’sGemini—relyonamethodcallednexttokenprediction,inwhichamodelisrepeatedlyfedsamplesoftextthathasbeenchoppedupintochunksknownastokens.Thesetokenscouldbeentirewordsorsimplyasetofcharacters.Thelasttokeninasequenceishiddenor‘masked’andthemodelisaskedtopredictit.Thetrainingalgorithmthencomparesthepredictionwiththemaskedtokenandadjuststhemodel’sparameterstoenableittomakeabetterpredictionnexttime.Theprocesscontinues—typicallyusing
YOUDON’TSEETHATKINDOFAUTHENTICAGENCYINLARGE
LANGUAGEMODELS.”
billionsoffragmentsoflanguage,scientifictextandprogrammingcode—untilthemodelcanreliablypredictthemaskedtokens.Bythisstage,themodelparametershavecapturedthestatisticalstructureofthetrainingdata,andtheknowledgecontainedtherein.Theparametersarethenfixedandthemodelusesthemtopre-dictnewtokenswhengivenfreshqueriesor‘prompts’thatwerenotnecessarilypresentinitstrainingdata,aprocessknownasinference. Theuseofatypeofneuralnetworkarchitec-tureknownasatransformerhastakenLLMssignificantlybeyondpreviousachievements.Thetransformerallowsamodeltolearnthatsometokenshaveaparticularlystronginfluenceonothers,eveniftheyarewidelyseparatedinasampleoftext.ThispermitsLLMstoparselanguageinwaysthatseemtomimichowhumansdoit—forexample,dif-ferentiatingbetweenthetwomeaningsoftheword‘bank’inthissentence:“Whentheriver’sbankflooded,thewaterdamagedthebank’sATM,makingitimpossibletowithdrawmoney.” Thisapproachhasturnedouttobehighlysuccessfulinawidearrayofcontexts,
includinggeneratingcomputerprogramstosolveproblemsthataredescribedinnaturallanguage,summarizingacademicarticlesandansweringmathematicsquestions.
Andothernewcapabilitieshaveemergedalongtheway,especiallyasLLMshaveincreasedinsize,raisingthepossibilitythatAGI,too,couldsimplyemergeifLLMsgetbigenough.Oneexampleischain-of-thought(CoT)prompting.ThisinvolvesshowinganLLManexampleofhowtobreakdownaproblemintosmallerstepstosolveit,orsimplyaskingtheLLMtosolveaproblemstep-by-step.CoTpromptingcanleadLLMstocorrectlyanswerquestionsthatpreviouslyflummoxedthem.Buttheprocessdoesn’tworkverywellwithsmallLLMs.
ThelimitsofLLMs
CoTpromptinghasbeenintegratedintotheworkingsofo1,accordingtoOpenAI,andunderliesthemodel’sprowess.FrancoisChollet,whowasanAIresearcheratGoogleinMountainView,California,andleftinNovembertostartanewcompany,thinks
Nature|Vol636|5December2024|23
Feature
thatthemodelincorporatesaCoTgeneratorthatcreatesnumerousCoTpromptsforauserqueryandamechanismtoselectagoodpromptfromthechoices.Duringtraining,o1istaughtnotonlytopredictthenexttoken,butalsotoselectthebestCoTpromptforagivenquery.TheadditionofCoTreasoningexplainswhy,forexample,o1-preview—theadvancedversionofo1—correctlysolved83%ofprob-lemsinaqualifyingexamfortheInternationalMathematicalOlympiad,aprestigiousmathe-maticscompetitionforhigh-schoolstudents,accordingtoOpenAI.Thatcompareswithascoreofjust13%forthecompany’spreviousmostpowerfulLLM,GPT-4o.
But,despitesuchsophistication,o1hasitslimitationsanddoesnotconstituteAGI,sayKambhampatiandChollet.Ontasksthatrequireplanning,forexample,Kambhampati’steamhasshownthatalthougho1performsadmirablyontasksthatrequireupto16plan-ningsteps,itsperformancedegradesrapidlywhenthenumberofstepsincreasestobetween20and40(ref.2).Cholletsawsimilarlimita-tionswhenhechallengedo1-previewwithatestofabstractreasoningandgeneralizationthathedesignedtomeasureprogresstowardsAGI.Thetesttakestheformofvisualpuzzles.Solvingthemrequireslookingatexamplestodeduceanabstractruleandusingthattosolvenewinstancesofasimilarpuzzle,somethinghumansdowithrelativeease.
LLMs,saysChollet,irrespectiveoftheirsize,arelimitedintheirabilitytosolveproblemsthatrequirerecombiningwhattheyhavelearnttotacklenewtasks.“LLMscannottrulyadapttonoveltybecausetheyhavenoabilitytobasicallytaketheirknowledgeandthendoafairlysophisticatedrecombinationofthatknowledgeontheflytoadapttonewcontext.”
CanLLMsdeliverAGI?
So,willLLMseverdeliverAGI?Onepointintheirfavouristhattheunderlyingtransformerarchitecturecanprocessandfindstatisticalpatternsinothertypesofinformationinadditiontotext,suchasimagesandaudio,providedthatthereisawaytoappropriatelytokenizethosedata.AndrewWilson,whostudiesmachinelearningatNewYorkUni-versityinNewYorkCity,andhiscolleaguesshowedthatthismightbebecausethedif-ferenttypesofdataallshareafeature:suchdatasetshavelow‘Kolmogorovcomplexity’,definedasthelengthoftheshortestcomputerprogramthat’srequiredtocreatethem3.Theresearchersalsoshowedthattransformersarewell-suitedtolearningaboutpatternsindatawithlowKolmogorovcomplexityandthatthissuitabilitygrowswiththesizeofthemodel.Transformershavethecapacitytomodelawideswatheofpossibilities,increasingthechancethatthetrainingalgorithmwilldiscoveranappropriatesolutiontoaproblem,andthis‘expressivity’increaseswithsize.Theseare,
saysWilson,“someoftheingredientsthatwereallyneedforuniversallearning”.AlthoughWilsonthinksAGIiscurrentlyoutofreach,hesaysthatLLMsandotherAIsystemsthatusethetransformerarchitecturehavesomeofthekeypropertiesofAGI-likebehaviour.
Yettherearealsosignsthattransformer-basedLLMshavelimits.Forastart,thedatausedtotrainthemodelsarerunningout.ResearchersatEpochAI,aninstituteinSanFranciscothatstudiestrendsinAI,estimate4thattheexistingstockofpubliclyavailabletextualdatausedfortrainingmightrunoutsomewherebetween2026and2032.TherearealsosignsthatthegainsbeingmadebyLLMs
HUMANSAND
OTHERANIMALS
AREAPROOFOF
PRINCIPLETHAT
YOUCANGETTHERE.”
astheygetbiggerarenotasgreatastheyoncewere,althoughit’snotclearifthisisrelatedtotherebeinglessnoveltyinthedatabecausesomanyhavenowbeenused,orsomethingelse.ThelatterwouldbodebadlyforLLMs.
RaiaHadsell,vice-presidentofresearchatGoogleDeepMindinLondon,raisesanotherproblem.Thepowerfultransformer-basedLLMsaretrainedtopredictthenexttoken,butthissingularfocus,sheargues,istoolimitedtodeliverAGI.BuildingmodelsthatinsteadgeneratesolutionsallatonceorinlargechunkscouldbringusclosertoAGI,shesays.Thealgorithmsthatcouldhelptobuildsuchmodelsarealreadyatworkinsomeexisting,non-LLMsystems,suchasOpenAI’sDALL-E,whichgeneratesrealistic,sometimestrippy,imagesinresponsetodescriptionsinnaturallanguage.ButtheylackLLMs’broadsuiteofcapabilities.
Buildmeaworldmodel
TheintuitionforwhatbreakthroughsareneededtoprogresstoAGIcomesfromneuroscientists.Theyarguethatourintelli-genceistheresultofthebrainbeingabletobuilda‘worldmodel’,arepresentationofoursurroundings.Thiscanbeusedtoimaginedifferentcoursesofactionandpredicttheirconsequences,andthereforetoplanandrea-son.Itcanalsobeusedtogeneralizeskillsthathavebeenlearntinonedomaintonewtasksbysimulatingdifferentscenarios.
Severalreportshaveclaimedevidencefortheemergenceofrudimentaryworldmodels
insideLLMs.Inonestudy5,researchersWesGurneeandMaxTegmarkattheMassachusettsInstituteofTechnologyinCambridgeclaimedthatawidelyusedopen-sourcefamilyofLLMsdevelopedinternalrepresentationsoftheworld,theUnitedStatesandNewYorkCitywhentrainedondatasetscontaininginfor-mationabouttheseplaces,althoughotherresearchersnotedonX(formerlyTwitter)thattherewasnoevidencethattheLLMswereusingtheworldmodelforsimulationsortolearncausalrelationships.Inanotherstudy6,KennethLi,acomputerscientistatHarvardUniversityinCambridgeandhiscolleaguesreportedevi-dencethatasmallLLMtrainedontranscriptsofmovesmadebyplayersoftheboardgameOthellolearnttointernallyrepresentthestateoftheboardandusedthistocorrectlypredictthenextlegalmove.
Otherresults,however,showhowworldmodelslearntbytoday’sAIsystemscanbeunreliable.Inonesuchstudy7,computersci-entistKeyonVafaatHarvardUniversity,andhiscolleaguesusedagiganticdatasetoftheturnstakenduringtaxiridesinNewYorkCitytotrainatransformer-basedmodeltopredictthenextturninasequence,whichitdidwithalmost100%accuracy.
Byexaminingtheturnsthemodelgener-ated,theresearcherswereabletoshowthatithadconstructedaninternalmaptoarriveatitsanswers.Butthemapborelittleresem-blancetoManhattan(see‘TheimpossiblestreetsofAI’),“containingstreetswithimpos-siblephysicalorientationsandflyoversaboveotherstreets”,theauthorswrite.“Althoughthemodeldoesdowellinsomenavigationtasks,it’sdoingwellwithanincoherentmap,”saysVafa.Andwhentheresearcherstweakedthetestdatatoincludeunforeseendetoursthatwerenotpresentinthetrainingdata,itfailedtopredictthenextturn,suggestingthatitwasunabletoadapttonewsituations.
Theimportanceoffeedback
Oneimportantfeaturethattoday’sLLMslackisinternalfeedback,saysDileepGeorge,amemberoftheAGIresearchteamatGoogleDeepMindinMountainView,California.Thehumanbrainisfulloffeedbackconnectionsthatallowinformationtoflowbidirectionallybetweenlayersofneurons.Thisallowsinfor-mationtoflowfromthesensorysystemtohigherlayersofthebraintocreateworldmod-elsthatreflectourenvironment.Italsomeansthatinformationfromtheworldmodelscanripplebackdownandguidetheacquisitionoffurthersensoryinformation.Suchbidirec-tionalprocesseslead,forexample,topercep-tions,whereinthebrainusesworldmodelstodeducetheprobablecausesofsensoryinputs.Theyalsoenableplanning,withworldmodelsusedtosimulatedifferentcoursesofaction. ButcurrentLLMsareabletousefeedbackonlyinatacked-onway.Inthecaseofo1,the
24|Nature|Vol636|5December2024
TruestreetsinManhattan,NewYork
Non-existent‘streets’reconstructed
Directionbyanartificial-intelligencesystem
oftravel
attheDalleMolleInstituteforArtificialIntelligenceStudiesinLugano-Viganelllo,Switzerland,reported9buildinganeuralnet-workthatcouldefficientlybuildaworldmodelofanartificialenvironment,andthenuseittotraintheAItoracevirtualcars.
IfyouthinkthatAIsystemswiththislevelofautonomysoundscary,youarenotalone.AswellasresearchinghowtobuildAGI,BengioisanadvocateofincorporatingsafetyintothedesignandregulationofAIsystems.Hearguesthatresearchmustfocusontrainingmodelsthatcanguaranteethesafetyoftheirownbehaviour—forinstance,byhavingmech-anismsthatcalculatetheprobabilitythatthemodelisviolatingsomespecifiedsafetycon-straintandrejectactionsiftheprobabilityistoohigh.Also,governmentsneedtoensuresafeuse.“Weneedademocraticprocessthatmakessureindividuals,corporations,eventhemilitary,useAIanddevelopAIinwaysthataregoingtobesafeforthepublic,”hesays.
SOURCE:REF.7
THEIMPOSSIBLESTREETSOFAI
Theabilitytobuildrepresentationsofour
environment,calledworldmodels,helpshumansto
reasonandplan.ItisthoughtthatAIsystemswillneedthiscapacity,too,iftheyaretodevelophuman-level
intelligence.InthecaseofanAIsystemthatwas
trainedtopredictroutestakenbytaxisinManhattan,NewYork,itsinternalmapdidnotresemblethereal
world.Inlatertesting,thisledtoaninabilitytohandledetoursthatwerenotpresentinthetrainingdata.
TheAIsystem’smap
containsstreetswith
impossibleorientations
andbridgesthatdon’texist.
SowilliteverbepossibletoachieveAGI?Computerscientistssaythereisnoreasontothinkotherwise.“Therearenotheoreticalimpediments,”saysGeorge.MelanieMitchell,acomputerscientistattheSantaFeInstituteinNewMexico,agrees.“Humansandsomeotheranimalsareaproofofprinciplethatyoucangetthere,”shesays.“Idon’tthinkthere’sanythingparticularlyspecialaboutbiologicalsystemsversussystemsmadeofothermaterialsthatwould,inprinciple,preventnon-biologicalsystemsfrombecomingintelligent.”
internalCoTpromptingthatseemstobeatwork—inwhichpromptsaregeneratedtohelpansweraqueryandfedbacktotheLLMbeforeitproducesitsfinalanswer—isaformoffeed-backconnectivity.But,asseenwithChollet’stestsofo1,thisdoesn’tensurebullet-proofabstractreasoning.
Researchers,includingKambhampati,havealsoexperimentedwithaddingexternalmod-ules,calledverifiers,ontoLLMs.ThesecheckanswersthataregeneratedbyanLLMinaspe-cificcontext,suchasforcreatingviabletravelplans,andasktheLLMtorerunthequeryiftheanswerisnotuptoscratch8.Kambhampati’steamshowedthatLLMsaidedbyexternalverifi-erswereabletocreatetravelplanssignificantlybetterthanwerevanillaLLMs.Theproblemisthatresearchershavetodesignbespokeverifi-ersforeachtask.“Thereisnouniversalverifier,”saysKambhampati.Bycontrast,anAGIsystemthatusedthisapproachwouldprobablyneedtobuilditsownverifierstosuitsituationsastheyarise,inmuchthesamewaythathumanscanuseabstractrulestoensuretheyarereasoningcorrectly,evenfornewtasks.
EffortstousesuchideastohelpproducenewAIsystemsareintheirinfancy.Bengio,forexample,isexploringhowtocreateAIsys-temswithdifferentarchitecturestotoday’stransformer-basedLLMs.Oneofthese,which
useswhathecallsgenerativeflownetworks,wouldallowasingleAIsystemtolearnhowtosimultaneouslybuildworldmodelsandthemodulesneededtousethemforreasoningandplanning.
AnotherbighurdleencounteredbyLLMsisthattheyaredataguzzlers.KarlFriston,athe-oreticalneuroscientistatUniversityCollegeLondon,suggeststhatfuturesystemscouldbemademoreefficientbygivingthemtheabilitytodecidejusthowmuchdatatheyneedtosam-plefromtheenvironmenttoconstructworldmodelsandmakereasonedpredictions,ratherthansimplyingestingallthedatatheyarefed.This,saysFriston,wouldrepresentaformofagencyorautonomy,whichmightbeneededforAGI.“Youdon’tseethatkindofauthen-ticagency,insay,largelanguagemodels,orgenerativeAI,”hesays.“Ifyou’vegotanykindofinte
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店品牌推广总结
- 软件行业采购管理心得
- 手机数码销售员工作总结
- 金融规划行业财务规划培训体验
- 云南省昆明市九县区人教版(PEP)2023-2024学年六年级上学期英语期末质量检测试卷
- 2021年广东省中山市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年四川省自贡市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2021年江苏省苏州市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2023年浙江省绍兴市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 简单辞职报告怎么写
- 2024年度医院内分泌与代谢科述职报告课件
- 手术室无菌操作流程
- 农业机械控制系统硬件在环测试规范
- 翁潭电站大王山输水隧洞施工控制网设计说明书
- 隆胸术培训课件
- 钢筋焊接培训课件
- 行政内勤培训课件
- 化纤企业(化学纤维纺织企业)安全生产操作规程
- 重大事故隐患专项排查检查表
- 中建住宅二次结构专项施工方案
- 红薯淀粉加工项目可行性研究报告
评论
0/150
提交评论