




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年沪教版高一数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、函数y=ax-1-3的图象恒过定点坐标是()
A.(1;-3)
B.(1;-2)
C.(2;-3)
D.(2;-2)
2、【题文】设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D)有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2;且f(x)为R上的8高调函数,那么实数a的取值范围是()
A.B.C.D.3、【题文】已知函数满足:=3;
则+++的值等于()A.36B.24C.18D.124、【题文】已知是一个棱长为1的正方体,是底面的中心,是棱上的点,且则四面体的体积为()A.B.C.D.5、已知甲、乙两地距丙的距离均为100km
且甲地在丙地的北偏东20鈭�
处,乙地在丙地的南偏东40鈭�
处,则甲乙两地的距离为(
)
A.100km
B.200km
C.1002km
D.1003km
评卷人得分二、填空题(共8题,共16分)6、过点(-2,1),倾斜角的正弦为的直线方程为____.7、关于函数f(x)=4sin(2x+),(x∈R)有下列命题:①f(x)是以2π为最小正周期的周期函数;②f(x)可改写为y=4cos(2x-);③f(x)的图象关于点(-0)对称;④f(x)的图象关于直线x=-对称;其中正确的序号为____。8、【题文】若则=_____________________________9、【题文】函数的反函数为_______.10、【题文】已知命题甲:a+b4,命题乙:a且b则命题甲是命题乙的____.11、某班举行数、理、化三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,则全班共有______人.12、函数f(x)=lg(1-2x)的定义域为______.13、已知等比数列{an},的前n项和为Sn,且S2=2,S4=8,则S6=______.评卷人得分三、证明题(共8题,共16分)14、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.15、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.16、求证:(1)周长为21的平行四边形能够被半径为的圆面所覆盖.
(2)桌面上放有一丝线做成的线圈,它的周长是2l,不管线圈形状如何,都可以被个半径为的圆纸片所覆盖.17、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.18、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.19、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.20、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.21、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.评卷人得分四、计算题(共4题,共36分)22、若,则=____.23、AB是⊙O的直径,BC切⊙O于B,AC交⊙O于D,且AD=DC,那么sin∠ACO=____.24、如果,已知:D为△ABC边AB上一点,且AC=,AD=2,DB=1,∠ADC=60°,求∠BCD的度数.25、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0}且A∩B={x|0<x≤2},A∪B={x|x>﹣2},求a、b的值.评卷人得分五、作图题(共1题,共4分)26、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.评卷人得分六、综合题(共1题,共2分)27、已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1;m),B(4,8)两点,与x轴交于原点及点C.
(1)求直线和抛物线解析式;
(2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由.参考答案一、选择题(共5题,共10分)1、B【分析】
令x=1,得y=a-3=-2;
所以函数y=ax-1-3的图象恒过定点坐标是(1;-2).
故选B.
【解析】【答案】令x-1=0;则x=1,即为定点横坐标,代入函数式可得定点纵坐标.
2、A【分析】【解析】
试题分析:当时,则即为上的8高调函数;当时,函数的图象如图所示,若为上的8高调函数,则解得且综上
考点:1.新定义题;2.函数图像.【解析】【答案】A3、B【分析】【解析】解:因为所以说明了所求的值为。
选B【解析】【答案】B4、C【分析】【解析】易知平面设是底面的中心,则平面
因为
所以故于是。
所以故选(C).【解析】【答案】C5、D【分析】解:由题意,如图所示OA=OB=100km隆脧AOB=120鈭�
隆脿
甲乙两地的距离为AB=1002+1002鈭�2隆脕100隆脕100隆脕cos120鈭�=1003km
故选:D
.
根据甲、乙两地距丙的距离均为100km
且甲地在丙地的北偏东20鈭�
处,乙地在丙地的南偏东40鈭�
处;利用余弦定理即可求出甲乙两地的距离.
本题考查解三角形的实际应用,考查余弦定理,考查学生的计算能力,比较基础.【解析】D
二、填空题(共8题,共16分)6、略
【分析】
设该直线的倾斜角为α(0≤α<π),由题意得sinα=则α=30°或α=150°
则直线的斜率k=tanα=tan30=或tan150°=-
所以所求直线的方程为y-1=±(x+2),化简得x-y+2+=0或x+y+2-=0
故答案为:x-y+2+=0或x+y+2-=0
【解析】【答案】由倾斜角的正弦等于根据倾斜角的范围及特殊角的三角函数值得到倾斜角的度数,然后根据倾斜角的正切值等于直线的斜率,求出直线的斜率,然后利用点(-2,1)和求出的斜率即可写出直线的方程.
7、略
【分析】【解析】试题分析:①最小正周期T=不正确;②f(x)=4sin(2x+)=4cos(-2x-)=4cos(2x+-)=4cos(2x-),正确;③f(x)=4sin(2x+)的对称点满足(x,0),则2x+=kπ,得x=k∈Z,(-0)满足条件,正确;④f(x)=4sin(2x+)的对称直线满足2x+=(k+)π得x=故x=-不满足,不正确。综上正确的命题有②③考点:本题考查了正弦函数及其性质【解析】【答案】②③8、略
【分析】【解析】因为【解析】【答案】19、略
【分析】【解析】
试题分析:由题意得所以反函数为
考点:反函数.【解析】【答案】10、略
【分析】【解析】当a+b4时,可选取a=1,b=5,故此时a且b不成立(a=1).
同样,a且b时,可选取a=2,b=2,a+b=4,故此时a+b=4.
因此;甲是乙的既不充分也不必要条件.
注:a且b为真时,必须ab同时成立.【解析】【答案】不充分也不必要条件11、略
【分析】解析:解:设参加数学;物理、化学三科竞赛的同学组成的集合分别为A、B、C;由题意可知A、B、C三集合中元素个数分别为27、25、27,A∩B、B∩C、A∩C、A∩B∩C的元素个数分别为10、7、11、4.画出韦恩图:
可知全班人数为10+13+12+6+4+7+3=55(人);
故答案为:55.
把文字语言转化成符号语言;借助于韦恩图的直观性把它表示出来,再根据集合中元素的互异性求出问题的解.
本题考查集合的运算,解题的关键是把文字语言转化成符号语言,借助于韦恩图的直观性把它表示出来,再根据集合中元素的互异性求出问题的解.【解析】5512、略
【分析】解:∵f(x)=lg(1-2x)
根据对数函数定义得1-2x>0;
解得:x<0
故答案为:(-∞;0)
根据对数函数定义得1-2x>0;求出解集即可.
考查学生理解函数的定义域是指使函数式有意义的自变量x的取值范围.会求不等式的解集.【解析】(-∞,0)13、略
【分析】解:由等比数列的性质可得S2,S4-S2,S6-S4也成等比数列;
∴(S4-S2)2=S2(S6-S4),代入数据可得36=2(S6-8);
解得S6=26;
故答案为:26.
由等比数列的性质可得S2,S4-S2,S6-S4也成等比数列,代入数据解关于S6的方程即可.
本题考查等比数列的性质,利用S2,S4-S2,S6-S4也成等比数列是解决问题的关键,属基础题.【解析】26三、证明题(共8题,共16分)14、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.15、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.16、略
【分析】【分析】(1)关键在于圆心位置;考虑到平行四边形是中心对称图形,可让覆盖圆圆心与平行四边形对角线交点叠合.
(2)“曲“化“直“.对比(1),应取均分线圈的二点连线段中点作为覆盖圆圆心.【解析】【解答】
证明:(1)如图1;设ABCD的周长为2l,BD≤AC,AC;BD交于O,P为周界上任意一点,不妨设在AB上;
则∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周长为2l的平行四边形ABCD可被以O为圆心;半径为的圆所覆盖;命题得证.
(2)如图2,在线圈上分别取点R,Q,使R、Q将线圈分成等长两段,每段各长l.又设RQ中点为G,M为线圈上任意一点,连MR、MQ,则GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G为圆心,长为半径的圆纸片可以覆盖住整个线圈.17、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.18、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.19、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
故FX、EX分别平分∠MFN与∠MEN.20、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.21、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.四、计算题(共4题,共36分)22、略
【分析】【分析】先判断a与1的大小,再去掉根号进行计算即可.【解析】【解答】解:∵;
∴a<1;
∴=
=1-a
=1-2+
=-1.
故答案为-1.23、略
【分析】【分析】连接BD,作OE⊥AD.在Rt△OEC中运用三角函数的定义求解.【解析】【解答】解:连接BD;作OE⊥AD.
AB是直径;则BD⊥AC.
∵AD=CD;
∴△BCD≌△BDA;BC=AB.
BC是切线;点B是切点;
∴∠ABC=90°,即△ABC是等腰直角三角形,∠A=45°,OE=AO.
由勾股定理得,CO=OB=AO;
所以sin∠ACO==.
故答案为.24、略
【分析】【分析】过C作CE⊥AB于E,要想求∠BCD的度数,只需求出∠BCE的度数即可.设DE=x,在Rt△DCE中,∠ADC=60°,可求出CE的长;在Rt△AEC中,可根据勾股定理列出等式,从而求出x的值,继而得出BE=CE,求出∠BCE的值.【解析】【解答】解:过C作CE⊥AB于E;
设DE=x;则AE=2-x;
在Rt△DCE中;∠ADC=60°;
∴CE=x;
在Rt△AEC中;
根据勾股定理得:AE2+CE2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 油料供销合同股份协议书
- 主播服装合同协议书
- 解除房屋预售合同协议书
- 酒店租赁安全协议书合同
- 自愿解除工程合同协议书
- 修理转让合同协议书范本
- 家装协议书合同范本
- 合伙入股合同协议书模板
- 2人股份分家合同协议书
- 清洁卫生施工合同协议书
- 静脉血标本采集技术课件
- 通信线路高风险作业施工安全操作须知样本
- 幼儿中班故事《猪太太生宝宝》课件
- 2024年考研英语真题及答案(完整版)
- 高等数学课件第一章函数与极限
- 屋顶-坡屋顶构造(建筑构造)
- 我在伊朗长大
- 临床医学概论课程的妇产科学与妇产科手术
- 30题纪检监察位岗位常见面试问题含HR问题考察点及参考回答
- 中职英语基础模块一Unit 8 People and events Reading
- 咖啡师职业生涯规划书
评论
0/150
提交评论