2025年冀教新版高一数学下册月考试卷_第1页
2025年冀教新版高一数学下册月考试卷_第2页
2025年冀教新版高一数学下册月考试卷_第3页
2025年冀教新版高一数学下册月考试卷_第4页
2025年冀教新版高一数学下册月考试卷_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年冀教新版高一数学下册月考试卷579考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、圆心为(1;2),且半径长为5的圆的方程为()

A.(x+1)2+(y+2)2=25

B.(x+1)2+(y+2)2=5

C.(x-1)2+(y-2)2=25

D.(x-1)2+(y-2)2=5

2、【题文】已知集合则()A.B.C.D.3、【题文】如果那么a、b间的关系是A.B.C.D.4、已知α是第二象限的角,那么是第几象限的角()A.第一、二象限角B.第二、三象限角C.第一、三象限角D.第三、四象限角5、函数f(x)=lnx+2x﹣7的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)评卷人得分二、填空题(共7题,共14分)6、函数f(x)=ax-1+2(a>0,a≠1)的图象恒过定点____.7、△ABC是边长为1的正三角形,点O是平面上任意一点,则=____.8、在如图所示的茎叶图中,甲、乙两组数据的中位数分别是____.9、右边所示的程序,若输入则输出10、【题文】函数①②③④⑤中,满足条件“”的有____.

(写出所有正确的序号)11、【题文】已知命题p:函数y=lg(2x-m+1)定义域为R;命题q:函数f(x)=(5-2m)x是增函数.若“p∧q”为真命题,则实数m的取值范围是___________12、已知点P在线段AB上,且|=4||,设=λ则实数λ的值为______.评卷人得分三、计算题(共6题,共12分)13、已知(a>b>0)是方程x2-5x+2=0的两个实根,求的值.14、相交两圆半径分别是5厘米、3厘米,公共弦长2厘米,那么这两圆的公切线长为____厘米.15、(2007•绵阳自主招生)如图,在矩形ABCD中,AB=8cm,BC=16cm,动点P从点A出发,以1cm/秒的速度向终点B移动,动点Q从点B出发以2cm/秒的速度向终点C移动,则移动第到____秒时,可使△PBQ的面积最大.16、若∠A是锐角,且cosA=,则cos(90°-A)=____.17、(2008•宁波校级自主招生)如图,在△ABC中,AB=AC,∠BAD=15°,且AE=AD,则∠CDE=____°.18、计算:0.0081+(4)2+()﹣16﹣0.75+2.评卷人得分四、作图题(共3题,共18分)19、如图A、B两个村子在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,且知道CD=3千米,现在要在河边CD上建一水厂,向A、B两村送自来水,铺设管道费用为每千米2000元,请你在CD上选择水厂位置O,使铺设管道的费用最省,并求出其费用.20、作出下列函数图象:y=21、以下是一个用基本算法语句编写的程序;根据程序画出其相应的程序框图.

评卷人得分五、证明题(共4题,共12分)22、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:

(1)AD=AE

(2)PC•CE=PA•BE.23、如图,已知:D、E分别为△ABC的AB、AC边上的点,DE∥BC,BE与CD交于点O,直线AO与BC边交于M,与DE交于N,求证:BM=MC.24、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.25、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分六、综合题(共4题,共16分)26、已知直线l1:x-y+2=0;l2:x+y-4=0,两条直线的交点为A,点B在l1上,点C在l2上,且,当B,C变化时,求过A,B,C三点的动圆形成的区域的面积大小为____.27、已知函数y1=px+q和y2=ax2+bx+c的图象交于A(1,-1)和B(3,1)两点,抛物线y2与x轴交点的横坐标为x1,x2,且|x1-x2|=2.

(1)求这两个函数的解析式;

(2)设y2与y轴交点为C,求△ABC的面积.28、如图,矩形ABCD中,AD<AB,P、Q分别为AD、BC的中点.N为DC上的一点,△AND沿直线AN对折点D恰好与PQ上的M点重合.若AD、AB分别为方程x2-6x+8=0的两根.

(1)求△AMN的外接圆的直径;

(2)四边形ADNM有内切圆吗?有则求出内切圆的面积,没有请说明理由.29、如图1;△ABC与△EFA为等腰直角三角形,AC与AE重合,AB=EF=9,∠BAC=∠AEF=90°,固定△ABC,将△EFA绕点A顺时针旋转,当AF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设AE;AF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图2.

(1)问:在图2中,始终与△AGC相似的三角形有____及____;

(2)设CG=x;BH=y,GH=z,求:

①y关于x的函数关系式;

②z关于x的函数关系式;(只要求根据第(1)问的结论说明理由)

(3)直接写出:当x为何值时,AG=AH.参考答案一、选择题(共5题,共10分)1、C【分析】

根据题意得:所求圆方程为(x-1)2+(y-2)2=25.

故选C

【解析】【答案】根据圆心坐标与半径写出圆标准方程即可.

2、B【分析】【解析】

试题分析:因为=所以

考点:本题考查集合的运算;对数不等式;对数函数的单调性。

点评:解对数不等式的主要方法是利用公式化为同底数的,然后利用对数函数的单调性即可。【解析】【答案】B3、B【分析】【解析】

试题分析:首先有其次由得则所以故选B.

考点:对数函数的性质.【解析】【答案】B4、C【分析】【解答】解:∵α是第二象限的角,∴2kπ+<α<2kπ+π;k∈z;

∴kπ+<<kπ+k∈z,故是第一;三象限角;

故选C.

【分析】由α是第二象限的角,可得2kπ+<α<2kπ+π,故kπ+<<kπ+k∈z,从而得到所在的象限.5、C【分析】【解答】解:∵函数f(x)=lnx﹣7+2x;x∈(0,+∞)单调递增;

f(1)=0﹣7+2=﹣5;

f(2)=ln2﹣3<0;

f(3)=ln3﹣1>0;

∴根据函数零点的存在性定理得出:零点所在区间是(2;3).

故选:C.

【分析】根据函数的单调性,零点的存在性定理求解特殊函数值即可判断.二、填空题(共7题,共14分)6、略

【分析】

根据指数函数过(0;1)点;

∴函数f(x)=ax-1+2当指数x-1=0即x=1时;y=3

∴函数的图象过(1;3)

故答案为:(1;3).

【解析】【答案】根据所有的指数函数过(0,1)点,函数f(x)=ax-1+2当指数x-1=0即x=1时;y=3,得到函数的图象过(1,3)

7、略

【分析】

因为△ABC是边长为1的正三角形且点O是平面上任意一点,所以对于=

∴==.

故答案为:.

【解析】【答案】因为△ABC是边长为1的正三角形且点O是平面上任意一点,对于=然后利用向量的模等于该向量平方的算数根进而求解.

8、略

【分析】

由茎叶图可得甲组共有9个数据中位数为45

乙组共9个数据中位数为46

故答案为45;46

【解析】【答案】本题主要考查了茎叶图所表达的含义;以及从样本数据中提取数字特征的能力,属容易题.

9、略

【分析】因为x=18>10,所以【解析】【答案】10、略

【分析】【解析】解:因为函数①②③④⑤中,满足条件“”的有①③。【解析】【答案】①③11、略

【分析】【解析】略【解析】【答案】12、略

【分析】解:∵点P在线段AB上,且||=4||,=λ

∴=3且与方向相反;

∴λ=-3.

故答案为:-3.

点P在线段AB上,且||=4||,=λ可得=3且与方向相反;即可得出.

本题考查了向量共线定理,考查了推理能力与计算能力,属于中档题.【解析】-3三、计算题(共6题,共12分)13、略

【分析】【分析】先把方程的两根代入程x2-5x+2=0,根据根与系数的关系得出+、的值,然后再代入求的值即可.【解析】【解答】解:∵是方程x2-5x+2=0的两实根;

∴a-5+2=0;

∴b-5+2=0,+=5,=2.

∴原式=[]÷+

=+=+=2•=2•=514、略

【分析】【分析】①连接CD交EF于O;连接CE,CA,DB,过D作DQ⊥CA于Q,根据勾股定理求出CO;DO,求出CD,证矩形DQAB,推出AQ=DB,AB=DQ,根据勾股定理求出DQ即可;

②求出CD=2-2,根据勾股定理求出即可.【解析】【解答】解:有两种情况:

①连接CD交EF于O;连接CE,CA,DB,过D作DQ⊥CA于Q;

∵EF是圆C和圆D的公共弦;

∴CD⊥EF;EO=FO=1;

在△CDE中,由勾股定理得:CO==2;

同理求出DO=2;

∴CD=2+2;

∵AB是两圆的外公切线;

∴QA⊥AB;DB⊥AB;

∵DQ⊥CA;

∴∠DQA=∠CAB=∠DBA=90°;

∴四边形AQDB是矩形,

∴AB=DQ;AQ=DB=3;

∴CQ=5-3=2;

在△CDQ中,由勾股定理得:DQ==4+2;

②如图所示:

同理求出AB=4-2.

故答案为:4±2.15、略

【分析】【分析】表示出PB,QB的长,利用△PBQ的面积等于y列式求值即可.【解析】【解答】解:设x秒后△PBQ的面积y.则

AP=x;QB=2x.

∴PB=8-x.

∴y=×(8-x)2x=-x2+8x=-(x-4)2+16;

∴当x=4时;面积最大.

故答案为4.16、略

【分析】【分析】首先根据诱导公式得出cos(90°-A)=sinA,再根据cosA2+sinA2=1求解即可.【解析】【解答】解:∵cosA2+sinA2=1;

又A为锐角,cosA=;

∴sinA=.

∴cos(90°-A)=sinA=.

故答案为:.17、略

【分析】【分析】根据等腰三角形性质推出∠1=∠2,∠B=∠C,根据三角形的外角性质得到∠1+∠3=∠B+15°,∠2=∠C+∠3,推出2∠3=15°即可.【解析】【解答】解:∵AD=AE,AC=AB,

∴∠1=∠2;∠B=∠C;

∵∠1+∠3=∠B+∠BAD=∠B+15°;

∠2=∠1=∠C+∠3;

∴∠C+∠3+∠3=∠B+15°;

2∠3=15°;

∴∠3=7.5°;

即∠CDE=7.5°;

故答案为:7.5°.18、解:原式=++﹣24×(﹣0.75)+5=0.3++﹣+5=5.55【分析】【分析】根据指数幂和对数的运算性质化简即可.四、作图题(共3题,共18分)19、略

【分析】【分析】作点A关于河CD的对称点A′,当水厂位置O在线段AA′上时,铺设管道的费用最省.【解析】【解答】解:作点A关于河CD的对称点A′;连接A′B,交CD与点O,则点O即为水厂位置,此时铺设的管道长度为OA+OB.

∵点A与点A′关于CD对称;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

过点A′作A′E⊥BE于E;则∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:铺设管道的最省费用为10000元.20、【解答】幂函数y={#mathml#}x32

{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;

【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.21、解:程序框图如下:

【分析】【分析】根据题目中的程序语言,得出该程序是顺序结构,利用构成程序框的图形符号及其作用,即可画出流程图.五、证明题(共4题,共12分)22、略

【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;

即可得到结论;

(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,

∵PC是⊙O的切线;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB为⊙O的直径;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC•CE=PA•BE.23、略

【分析】【分析】延长AM,过点B作CD的平行线与AM的延长线交于点F,再连接CF.根据平行线分线段成比例的性质和逆定理可得CF∥BE,根据平行四边形的判定和性质即可得证.【解析】【解答】证明:延长AM;过点B作CD的平行线与AM的延长线交于点F,再连接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

从而四边形OBFC为平行四边形;

所以BM=MC.24、略

【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四边形GBFC是平行四边形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵过A;G的圆与BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四点共圆;

∴GA;GF=GC•GD;

即GA2=GC•GD.25、略

【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;

由图知:∠FDC是△ACD的一个外角;

则有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四边形ABCD是圆的内接四边形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分别是∠AFB、∠AED的角平分线;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)连接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可证得∠NEX=∠MEX;

故FX、EX分别平分∠MFN与∠MEN.六、综合题(共4题,共16分)26、略

【分析】【分析】由题意可知当A与B或C重合时,所成的圆最大,它包括了所有的圆,所以求出半径为2时圆的面积即为动圆所形成的区域的面积.【解析】【解答】解:当A与B或C重合时,此时圆的面积最大,此时圆的半径r=BC=2;

所以此时圆的面积S=πr2=π(2)2=8π;

则过A;B、C三点的动圆所形成的区域的面积为8π.

故答案为8π.27、略

【分析】【分析】(1)将A、B两点代入函数y1=px+q中,可求函数解析式,将A、B代入y2=ax2+bx+c中,再利用根与系数关系,列方程组求y2的函数关系式;

(2)根据A、B、C三点坐标,利用组合图形求三角形的面积.【解析】【解答】解:(1)将A、B两点坐标代入函数y1=px+q中,得,解得;

∴函数y1=x-2;

由根与系数关系,得x1+x2=-,x1•x2=;

∵|x1-x2|=2,∴(x1-x2)2=8,即(x1+x2)2-4x1•x2=8,b2-4ac=8a2;

将A、B两点坐标代入函数y2=ax2+bx+c中,得,解得或;

∴函数y2=x2-x-或y2=-x2+3x-;

(2)当y2=x2-x-时,C(0,-);

S△ABC=×(1+3)×2-×3×(1+)-×1×=;

当y2=-x2+3x-时,C(0,-);

S△ABC=×(1+)×3-×(1+3)×2-×1×(-1)=.28、略

【分析】【分析】(1)首先解方程求出AD;AB;利用折叠前后图形不变得出AM=AD=2,以及得出∠NAM=30°,进而求出AN,即是Rt△AMN的外接圆直径;

(2)首先得出I所在位置,得出四边形IEDF为正方形,再利用三角形相似求出内切圆的半径.【解析】【解答】解:(1)x2-6x+8=0得x1=2,x2=4;

又AD;AB为方程的两根;AD<AB;

∴AD=2;AB=4;

∴AM=AD=2;AP=1;

在Rt△AMP中;∠PAM=60°;

∴∠PMA=30°;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论