版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
清单07相似(11个考点梳理+题型解读+核心素养提升+中考聚焦)【知识导图】【知识清单】知识点一、图形的相似的概念形状相同的图形叫做相似图形。1)两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到;2)全等的图形可以看成是一种特殊的相似,即不仅形状相同,大小也相同;3)判断两个图形是否相似,就是看两个图形是不是形状相同,与其他因素无关。【例1】(2022·辽宁铁岭·九年级期末)下列各组图形中,一定相似的是(
)A.两个正方形 B.两个矩形 C.两个菱形 D.两个平行四边形【答案】A【分析】根据相似图形的概念逐项进行判断即可.【详解】解:A、任意两个正方形的对应角相等,对应边的比也相等,故一定相似,故此选项符合题意;B、任意两个矩形对应角相等,但对应边的比不一定相等,故不一定相似,此选项不符合题意,C、任意两个菱形的对应边的比相等,但对应角不一定相等,故不一定相似,此选项不符合题意;D、任意两个平行四边形对应边的比不一定相等,对应角也不一定相等,故不一定相似,此选项不符合题意;故选:A.【点睛】本题考查的是相似图形的概念,掌握对应角相等,对应边的比相等的多边形,叫做相似多边形是解题的关键.知识点二、成比例线段在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段。1)若四条线段、、、成比例,则记作或。注意:四条线段的位置不能随意颠倒。2)四条线段、、、的单位应一致(有时为了计算方便,、的单位一致,、的单位一致也可以)3)判断四条线段是否成比例:①将四条线段按从小到大(或从大到小)的顺序排列;②分别计算第一和第二、第三和第四线段的比;若相等则是成比例线段,否则就不是。4)比例的重要性质:基本性质:若,则;反之,也成立。和比性质:若,则;更比性质:若,则;反比性质:若,则;等比性质:若,则。5)拓展:eq\o\ac(○,1)比例式中,或中,、叫外项,、叫内项,、叫前项,、叫后项,如果,那么叫做、的比例中项。eq\o\ac(○,2)把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。【例2】(2022·黑龙江·肇源县第二中学九年级期末)下列四组长度的线段中,是成比例线段的是(
)A.4cm,5cm,6cm,7cm B.3cm,4cm,5cm,8cmC.5cm,15cm,3cm,9cm D.8cm,4cm,1cm,3cm【答案】C【分析】根据成比例线段的定义,逐项分析判断即可,成比例线段,如果两条线段的比值与另两条线段的比值相等,即,则为成比例线段.【详解】A、∵,∴4cm,5cm,6cm,7cm不是成比例线段,故该选项不符合题意;B、∵,∴3cm,4cm,5cm,8cm不是成比例线段,故该选项不符合题意;C、∵,∴5cm,15cm,3cm,9cm是成比例线段,故该选项符合题意;D、∵,∴8cm,4cm,1cm,3cm不是成比例线段,故该选项不符合题意;故选C.【点睛】本题主要考查了成比例线段的定义,理解成比例线段的定义是解题的关键.知识点三、平行线分线段成比例平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例。推论:平行于三角形一边的直线与其他两条直线相交,截得的对应线段成比例。【例3】(2022·河北保定师范附属学校九年级期末)如图,AB∥CD∥EF,若,BD=5,则DF=()A.5 B.10 C.15 D.2.5【答案】B【分析】根据AB∥CD∥EF,可知,将DF的长度代入即可.【详解】解:∵AB∥CD∥EF,∴,∵BD=5,∴,解得:DF=10,故选:B.【点睛】本题考查由平行截线求相关线段的长或比值,能够熟练求出相关线段的长或比值是解决本题的关键.【变式】(2022·黑龙江·肇源县第二中学九年级期末)如图,是的中线,点在上,,连接并延长交于点,则:的值是(
)A.: B.: C.: D.:【答案】A【分析】过点D作与BF交于点G,于是FC=2DG,AF=3DG,∴AF:FC=3DG:2DG=3:2【详解】过点D作与BF交于点G,如图:是的中线即即故选:A.【点睛】本题考查了平行线分线段成比例定理,熟悉概念是解题关键.知识点四、相似多边形的性质与判定(1)相似多边形对应角相等,对应边的比相等。(2)相似比:相似多边形对应边的比称为相似比。(3)判断两个多边形相似,必须同时具备:(1)边数相同;(2)对应角相等;(3)对应边的比相等。【例4】(2022·四川宜宾·九年级期末)如图,四边形四边形,,,,则∠D的度数为(
)A.100° B.110° C.120° D.130°【答案】C【分析】利用相似多边形的对应角相等求得答案即可.【详解】解:∵四边形ABCD∽四边形,,∴.∵四边形ABCD的内角和为,,,∴.故选:C.【点睛】本题主要考查了相似多边形的性质,解题的关键是了解相似多边形的对应角相等.【变式】(2022·福建三明·九年级期末)两个相似多边形的周长比是2∶3,其中较小多边形的面积为12cm2,则较大多边形的面积为_____cm2【答案】27【分析】根据相似多边形的性质:相似多边形周长的比等于相似比;相似多边形面积的比等于相似比,即可求出较大多边形的面积.【详解】∵∴相似比为:∴∴∴大多边型的面积为:27cm2故答案为:27.【点睛】本题考查相似多边形的性质,解题的关键是熟练掌握相似多边形的性质.【变式2】(2022·陕西·西安辅轮中学九年级期末)宽与长的比等于黄金比的矩形称为黄金矩形.古希腊很多矩形建筑中宽与长的比都等于黄金比,如图,矩形ABCD为黄金矩形,AB<AD,以AB为边在矩形ABCD内部作正方形ABEF,若AD=1,则DF=________.【答案】【分析】先根据黄金矩形求出AB,再利用正方形的性质求出AF,然后进行计算即可解答.【详解】解:∵矩形ABCD为黄金矩形,AB<AD,∴,∴,∵四边形ABEF是正方形,∴AB=AF=,∴DF=AD-AF=,故答案为:.【点睛】本题考查了黄金分割,相似多边形的性质,正方形的性质,矩形的性质,熟练掌握黄金分割是解题的关键.【变式3】(2022·江西吉安·九年级期末)如图,矩形OBCD的一个顶点与原点重合,两边分别在坐标轴上,反比例函数的图象与该矩形相交于E,F两点,以这两点为顶点作矩形CEAF,我们约定这个矩形CEAF为反比例函数的“相伴矩形”.已知点C的坐标为,BE=2.(1)求点F的坐标;(2)求证:“相伴矩形”CEAF与原矩形OBCD相似.【答案】(1)(2)证明见解析【分析】(1)由题意知,,则有相同的纵坐标,有相同的横坐标,有,待定系数法求反比例函数解析式为,代入中得,进而可得点坐标;(2)求出的长,计算可得,进而结论得证.(1)解:由题意知,∴有相同的纵坐标,有相同的横坐标∴将代入中,解得∴反比例函数解析式为将代入中得∴.(2)证明:由题意得,∵,∴∴“相伴矩形”CEAF与原矩形OBCD相似.【点睛】本题考查了矩形的性质,反比例函数与几何综合,相似多边形.解题的关键在于求出反比例函数解析式.知识点五、相似三角形的相关概念1)、相似三角形的概念:对应角相等,对应边的比相等的两个三角形是相似三角形。三角形相似具有传递性。2)、相似比的概念:相似三角形对应边的比叫做相似比。相似三角形对应边的比是有顺序的。3、相似三角形与全等三角形的关系:相似三角形不一定是全等三角形,但全等三角形一定是相似三角形。若两个相似三角形的相似比是1,则这两个三角形是全等三角形,由此可见,全等三角形是相似三角形的一种特例。【例5】下列说法一定正确的是( )(A)有两边对应成比例且一角相等的两个三角形相似(B)对应角相等的两个三角形不一定相似(C)有两边对应成比例且夹角相等的两个三角形相似(D)一条直线截三角形两边所得的三角形与原三角形相似【答案】C【解析】根据判定定理2可知A错误,C正确;根据判定定理1可知B错误,根据相似三 角形预备定理可知只有直线与底边平行时才相似.【总结】考查相似三角形的判定定理掌握情况和相关条件.知识点六、相似三角形的判定判定1:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。判定2:如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两个三角形相似。判定3:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。判定4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似(此知识常用,用时需要证明)。【例6】(2022·河南·测试·编辑教研五九年级期末)如图,若,,与交于点,且,,则等于(
)A. B. C. D.【答案】C【分析】如图(见解析)所示,延长到,使,连结,则,根据等腰三角形的性质和三角形外角性质,可得,由于,则,于是可证明,然后利用相似三角形的相似比即可算出的值.【详解】解:如图所示,延长到,使,连结又∵,∴∴∵,∴又∵,∴∴即故选C.【点睛】本题考查了相似三角形的判定和性质以及等腰三角形的性质,解题的关键是构建与相似.【变式】如图,四边形中,,,E为的中点.(1)求证:.(2)若,,连结DE交AC于点F,求的值.【答案】(1)见解析(2)【分析】(1)由,得到,由直角三角形斜边上中线性质得到,则,得到,又由即可得到结论;(2)由,得到,求得,得到,由,得到,进一步即可得到结论.【详解】(1)证明:∵,∴,∵E为的中点,∴,∴,∴,∵,∴.(2)解:如图,∵,∴,∵,,∴,∴,∴,∵,∴,∴.【点睛】此题主要考查了相似三角形的判定和性质、直角三角形斜边上中线的性质、等腰三角形的判定和性质等知识,熟练掌握相似三角形的判定和性质是解题的关键.知识点七、相似三角形的性质1、对应角相等,对应边的比相等;2、拓展:对应高的比,对应中线的比,对应角平分线的比都等于相似比。3、相似三角形周长的比等于相似比,面积的比等于相似比的平方。(相似多边形周长比等于相似比,相似多边形的面积比等于相似比的平方。)【例7】(2022·广西百色·九年级期末)如下图所示,在△ABC中,点D在线段AC上,且△ABC∽△ADB,则下列结论一定正确的是(
)A. B.C. D.【答案】A【分析】根据相似三角形对应边成比例列式整理即可得解.【详解】解:∵△ABC∽△ADB,∴,∴AB2=AC•AD.故选:A.【点睛】本题考查了相似三角形的性质,熟练掌握对应顶点的字母放在对应位置上并准确确定出对应边是解题的关键.【变式1】(2022·黑龙江·肇源县第二中学九年级期末)如图,在矩形中,点、分别在边、上,∽,,,,求的长.【答案】【分析】由∽,,,,根据相似三角形的对应边成比例,即可求得DF的长,然后利用勾股定理,求EF的长.【详解】解:∵△ABE∽△DEF,∴,∵,,,∴,解得:∵四边形ABCD是矩形,∴∠D=90°,∴EF=.故选:C.【点睛】此题考查了相似三角形的性质、矩形的性质以及勾股定理,熟练掌握以上知识是解题的关键.【变式2】如图,在的方格纸中,每个小正方形边长都是,是格点三角形(顶点在方格顶点处).(1)在图1中画格点,使与相似,相似比为.(2)在图2中画格点,使与相似,面积比为.(注:图、图在答题纸上.)【分析】(1)根据,相似比为,得,即的各边长扩大两倍;(2)根据,面积比为,则相似比为:,得,即的各边长扩大倍.【详解】(1)画法不唯一,如下图1:由题意得,,,,∵,相似比为,∴,∴的各边长扩大两倍,∴,,.(2)画法不唯一,如图2:由(1)得:,,,∴,面积比为,∴相似比为:,∴,∴的各边长扩大倍,∴,,.【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形的性质,相似三角形的面积比等于相似比的平方.知识点八、利用相似三角形测高1)、利用相似三角形的性质测量河的宽度,计算不能直接测量的物体的高度或深度。2)、利用三角形的性质来解决实际问题的核心是构造相似三角形,在构造的相似三角形中,被测物体必须是其中一边,注意要把握其余的对应边易测这一原则。【例8】如图,直立在B处的标杆AB=2.4m,直立在F处的观测者从E处看到标杆顶A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8m,FB=2.5m,人高EF=1.5m,求树高CD.【答案与解析】解:过E作EH⊥CD交CD于H点,交AB于点G,如下图所示:由已知得,EF⊥FD,AB⊥FD,CD⊥FD,∵EH⊥CD,EH⊥AB,∴四边形EFDH为矩形,∴EF=GB=DH=1.5米,EG=FB=2.5米,GH=BD=8米,∴AG=AB﹣GB=2.4﹣1.5=0.9米,∵EH⊥CD,EH⊥AB,∴AG∥CH,∴△AEG∽△CEH,∴=,∴=,解得:CH=3.78米,∴DC=CH+DH=3.78+1.5=5.28米.答:故树高DC为5.2米.【总结升华】本题考查了相似三角形在实际问题中的运用,关键是正确作出辅助线,构造出相似三角形.知识点九、位似的概念及性质1)两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,象这样的两个图形叫做位似图形,这个点叫做位似中心。这时的相似比又称为位似比。相似图形与位似图形的区别与联系:1、区别:①位似图形对应点的连线交于一点,相似图形没有;②位似图形的对应边互相平行,相似图形没有。2、联系:位似图形是特殊的相似图形。2)相似图形与位似图形的区别与联系:区别:①位似图形对应点的连线交于一点,相似图形没有;②位似图形的对应边互相平行,相似图形没有。联系:位似图形是特殊的相似图形。3)、位似图形是特殊的相似图形,故具有相似图形的一切性质。4)、位似图形上任意一对对应点到位似中心的距离比等于相似比。【例9】(2022·浙江·诸暨市浣纱初级中学九年级期末)如图,与位似,点O为位似中心.已知,则与的面积比为(
)A. B. C. D.【答案】B【分析】先求出相似比,然后根据面积比等于相似比的平方即可得出答案.【详解】解:∵,∴,∴与的相似比为,∴与的面积比为,故选:B.【点睛】本题考查了位似变换,相似三角形的性质,熟知相似三角形的面积比等于相似比的平方是解本题的关键.知识点十、利用位似变换作图(放大或缩小图形)利用位似变换可以把一个图形放大或缩小,若位似比大于1,则通过位似变换把原图形放大;若位似比小于1,则通过位似变换把原图形缩小。画位似图形的一般步骤:①确定位似中心;②连线并延长(分别连接位似中心和能代表原图的关键点并延长);③根据相似比确定各线段的长度;④顺次连接上述个点,得到图形。【例10】如图,三个顶点的坐标分别为,以原点O为位似中心,将放大为原来的2倍得.(1)在图中第一象限内画出符合要求的(不要求写画法)(2)计算的面积.【答案】(1)见解析(2)6【分析】(1)利用位似图形的性质,结合对应点坐标同乘以2,进而得出答案;(2)利用经过点的矩形的面积减去3个直角三角形的面积即可求得的面积.【详解】(1)解:三个顶点的坐标分别为,以原点O为位似中心,将放大为原来的2倍得,∴,顺次连接,如图所示:即为所求;(2)的面积为:.【点睛】本题主要考查了位似变换,利用位似图形的性质得出对应点坐标是解题关键.【变式1】(2022·山西朔州·九年级期末)如图,在平面直角坐标系中,与是位似图形,则位似中心是(
).A. B. C. D.【答案】B【分析】找位似图形的位似中心直接连接位似图形的对应点并延长,延长线的交点即所找位似中心,写出坐标即可.【详解】作图如下:延长线的交点为(7,0),位似中心即为(7,0).故选:B.【点睛】本题考查了找位似图形的位似中心,理解位似中心的定义做出图像是做出本题的关键.【变式2】(2022·山西晋中·九年级期末)如图所示,小华在学习《图形的位似》时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC与△A1B1C1的位似中心M点的位置,并写出M点的坐标;(2)若以点O为位似中心,请你帮小华在图中给定的网格内画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的位似比为2:1(只画一种类型).【答案】(1)图见解析,(2)图见解析【分析】(1)连接,交于点,再利用待定系数法分别求出直线的解析式,然后联立两个解析式,解方程组即可得点的坐标;(2)画在轴左侧的情况,先根据位似比求出点的坐标,再描点、连接起来即可得.【详解】(1)解:如图,连接,交点即为所求,由图可知,,,设直线的解析式为,将点代入得:,解得,则直线的解析式为,设直线的解析式为,将点代入得:,解得,则直线的解析式为,联立,解得,则点的坐标为,故答案为:.(2)解:画在轴左侧的情况,与的位似比为,且,,即,则画出如图所示:【点睛】本题考查了画位似图形、一次函数,熟练掌握位似图形的画法和性质是解题关键.知识点十一、图形的变换与坐标1)、平移:(1)图形沿x轴平移后,所得新图形的各对应点的纵坐标不变,当向右平移n个单位时,横坐标应相应地加n个单位,反之则减;(2)图形沿y轴平移后,所得新图形的各对应点的横坐标不变,纵坐标上加、下减。2)、轴对称:(1)图形沿x轴翻折后所得新图形的各对应点的横坐标不变,纵坐标互为相反数;(2)图形沿y轴翻折后所得新图形的各对应点的纵坐标不变,横坐标互为相反数。3)、以原点为位似中心的位似变换在平面直角坐标系中,如果位似变化是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k(对应点在位似中心同侧)或者-k(对应点在位似中心异侧)。即:若设原图形的某一点的坐标为,则其位似图形对应点的坐标为或。【例11】已知点,,以原点O为位似中心,把线段缩短为原来的,点D与点B对应.则点D的坐标为(
)A. B. C.或 D.或【答案】C【分析】根据位似变换的性质计算,得到答案.【详解】解:以原点为位似中心,把线段缩短为原来的,点的坐标为,点的坐标为,或.即或.故选:C.【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.【变式】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)四边形AA2C2C的面积是平方单位.【答案】(1)(2,﹣2)(2)见解析(3)7.5【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,找出所求点坐标即可;(3)根据四边形的面积等于两个三角形面积之和解答即可.(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,使△A2B2C2与△ABC位似,且位似比为2:1,∴,根据画出点,∴,根据画出点,点与点重合,连接、、,即可得到△A2B2C2;(3)四边形AA2C2C的面积是=故答案为:7.5【点睛】本题主要考查了利用平移变换和位似变换进行作图,解决问题的关键是掌握:平移图形时,要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.【核心素养提升】数学建模-构建相似三角形模型解决实际问题1.(2022·江西吉安·九年级期末)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为_____.【答案】3.2m【分析】连接AC,过点M作MF⊥PQ,根据同一时刻物体影子与实际高度成比例得,进行计算即可得PF的长度,即可得.【详解】解:如图所示,连接AC,过点M作MF⊥PQ,∵PQ⊥QN,MN⊥QN,∴四边形FQNM是矩形,∴FQ=MN=0.8,∵同一时刻物体影子与实际高度成比例,∴,∴,∴PF=2.4,∴PQ=PF+FQ=2.4+0.8=3.2(m),故答案为:3.2m.【点睛】本题考查了相似三角形的应用,解题的关键是运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.2.逻辑推理-利用相似三角形的判定和性质进行推理2.(2022·福建三明·九年级期末)如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与AC相交于点H,连接DG.以下四个结论:①∠EAB=∠BFE=∠DAG;②△ACF∽△ADG;③;④DG⊥AC.其中正确的是_____.(写出所有正确结论的序号)【答案】①②④【分析】根据正方形的性质可知,有对顶角相等,可证∠EAB=∠BFE,由可证∠EAB=∠DAG,可判断结论①正确;由,,两边对应成比例且夹角相等即可得△ACF∽△ADG,可判断结论②正确;由结论②可知,可得DG平分,由正方形可知是等腰直角三角形,可推出DG⊥AC,结论④正确;利用两组角对应相等的两个三角形相似可得△ACF∽△AFH,根据相似的性质可得,则,又有,则结论③错误.【详解】解:设AB与EF相交于点O,如图所示,∵四边形ABCD和四边形AEFG都是正方形,∴,.又∵,∴.∵,∴,∴,故结论①正确;∵AC、AF是正方形ABCD和正方形AEFG的对角线,∴,,∴.又∵,∴,即.∴△ACF∽△ADG.故结论②正确;由△ACF∽△ADG可知,∴DG平分.∵是等腰直角三角形,∴DG⊥AC.故结论④正确;∵,,∴△ACF∽△AFH,∴,∴.∵在等腰直角中,,∴,故结论③错误,∴正确的结论是①②④,故答案为:①②④.【点睛】本题考查了正方形的性质,相似三角形的判定和性质,等腰直角三角形的判定和性质以及勾股定理,熟练掌握相似三角形的判定定理证明三角形相似是解题的关键.3.分类讨论思想3.(2022·河南南阳·九年级期末)在中,,过点B作射线.动点D从点A出发沿射线方向以每秒3个单位的速度运动,同时动点E从点C沿射线方向以每秒2个单位的速度运动.过点E作交射线于F,G是中点,连接.设点D运动的时间为t,当与相似且点D位于点E左侧时,t的值为_____________.【答案】3或【分析】若与相似,分情况讨论,则或,由相似三角形的性质可求解.【详解】解:如下图:,是的中点,.点D位于点E左侧时,即,,解得:,,若与相似,则或,或,或故答案为:3或.【点睛】本题考查了相似三角形的判定,解题的关键是利用分类讨论思想解决问题.4.方程的思想4.(2022·广西梧州·九年级期末)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA向点A以1厘米/秒的速度移动,点Q从点B开始沿BO向点O以1厘米/秒的速度移动.当一点运动到终点时,另一点也随之停止.如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6),求当POQ与AOB相似时t的值.【答案】4或2【分析】分△POQ∽△AOB和△POQ∽△BOA两种情况,利用相似三角形的性质分类求解即可.【详解】解:由题意,OP=t,OQ=6-t,有两种情况:①若△POQ∽△AOB,则有
即,解得t=4.②若△POQ∽△BOA,则有即,解得t=2.∴当t=4或t=2时,△POQ与△AOB相似.【点睛】本题考查相似三角形的性质、解一元一次方程,熟练掌握相似三角形的对应边成比例是解答的关键.5.(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∠ACE=90°﹣2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°﹣2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°﹣(90°﹣2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD﹣∠BCD=45°﹣22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5﹣5,∴线段BD的长为5﹣5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①﹣②×2,得:(AM﹣CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=﹣7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8﹣y,在Rt△ABF中,AF2+BF2=AB2,∴(8﹣y)2+y2=50,解得:y=1或y=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.【中考热点聚焦】热点1.相似三角形的性质1.(2023•重庆)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2 B.1:4 C.1:8 D.1:16【分析】根据相似三角形的性质:相似三角形周长的比等于相似比,求解即可.【解答】解:∵两个相似三角形周长的比为1:4,∴这两个三角形对应边的比为1:4,故选:B.【点评】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.2.(2023•怀化)在平面直角坐标系中,△AOB为等边三角形,点A的坐标为(1,0).把△A0B按如图所示的方式放置,并将△AOB进行变换:第一次变换将△AOB绕着原点O顺时针旋转60°,同时边长扩大为△AOB边长的2倍,得到△A1OB1;第二次旋转将△A1OB1绕着原点O顺时针旋转60°,同时边长扩大为△A1OB1边长的2倍,得到△A2OB2,….依次类推,得到△A2023OB2023,则△A2023OB2023的边长为22023,点A2023的坐标为(22022,﹣22022).【分析】利用等边三角形的性质,探究规律后,利用规律解决问题.【解答】解:由题意OA=1=20,OA1=2=21,OA2=4=22,OA3=8=23,…OAn=2n,∴△A2023OB2023的边长为22023,∵2023÷6=337…1,∴A2023与A1都在第四象限,坐标为(22022,﹣22022•).故答案为:22023,(22022,﹣22022).【点评】本题考查相似三角形的性质,规律型—点的坐标等知识,解题的关键是学会探究规律的方法,属于中考常考题型.热点2.相似三角形的判定和性质的综合应用3.(2023•雅安)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为()A.4 B.6 C.8 D.10【分析】根据平行四边形的性质得出AD∥BC,AB∥CD,AD=BC,于是推出△DEF∽△BEC,△DFC∽△AFG,先求出DF与BC的比值,继而得出DF与AF的比值,再根据相似三角形对应边成比例即可求出GF的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵AD∥BC,∴△DEF∽△BEC,∴,∵EF=1,EC=3,∴,即,∴,∵AB∥CD,∴△DFC∽△AFG,∴,∵EF=1,EC=3,∴CF=4,∴,∴GF=8,故选:C.【点评】本题考查了平行四边形的性质和相似三角形的判定与性质,熟练掌握这些图形的性质是解题的关键.4.(2023•哈尔滨)如图,AC,BD相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为()A.2 B.4 C.6 D.8【分析】由AB∥DC易得△CDO∽△ABO,根据相似三角形的性质可得=,于是AC=OA+OC=OA+OA=12,求出OA=8,易得MN为△AOB的中位线,则MN=OA.【解答】解:∵AB∥DC,∴△CDO∽△ABO,∴,∵DO:OB=1:2,∴=,∴OC=OA,∵AC=OA+OC=12,∴OA+OA=12,∴OA=8,∵MN∥AC,M是AB的中点,∴MN为△AOB的中位线,∴MN=OA==4.故选:B.【点评】本题主要考查相似三角形的判定与性质、三角形中位线定理,熟记“8”字模型相似三角形,以及三角形中位线定理是解题关键.5.(2023•东营)如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE=60°.若BD=4DC,DE=2.4,则AD的长为()A.1.8 B.2.4 C.3 D.3.2【分析】先证∠CAD=∠BDE,再根据∠B=∠C=60°,得出△ADC∽△DEB,根据相似三角形的性质即可求出AD的长.【解答】解:∵△ABC是等边三角形,∴BC=AC,∠B=∠C=60°,∴∠CAD+∠ADC=120°,∵∠ADE=60°.∴∠BDE+∠ADC=120°,∴∠CAD=∠BDE,∴△ADC∽△DEB,∴,∵BD=4DC,∴设DC=x,则BD=4x,∴BC=AC=5x,∴,∴AD=3,故选:C.【点评】本题考查了三角形相似的判定与性质,等边三角形的性质,掌握有两个角相等的两个三角形相似是解题的关键.6.(2023•东营)如图,正方形ABCD的边长为4,点E,F分别在边DC,BC上,且BF=CE,AE平分∠CAD,连接DF,分别交AE,AC于点G,M.P是线段AG上的一个动点,过点P作PN⊥AC,垂足为N,连接PM.有下列四个结论:①AE垂直平分DM;②PM+PN的最小值为3;③CF2=GE•AE;④S△ADM=6.其中正确的是()A.①② B.②③④ C.①③④ D.①③【分析】①先根据正方形的性质证得△ADE和△DCF全等,再利用ASA证得△AGM和△AGD全等,即可得出AE垂直平分DM;②连接BD与AC交于点O,交AG于点H,连接HM,根据题意当点P与点H重合时,PM+PN的值最小,即PM+PN的最小值是DO的长,根据正方形的性质求出BD的长,从而得出,即PM+PN的最小值;③先证△DGE∽△ADE,再根据相似三角形的性质及CF=DE,即可判断;④先求出AM的长,再根据三角形面积公式计算即可.【解答】解:①∵四边形ABCD是正方形,∴AD=DC=BC,∠ADC=∠DCB=90°,∵BF=CE,∴BC﹣BF=DC﹣CE,即CF=DE,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴∠DAE=∠CDF,∵∠CDF+∠ADG=90°,∴∠DAE+∠ADG=90°,∴∠AGD=90°,∴∠AGM=90°,∴∠AGM=∠AGD,∵AE平分∠CAD,∴∠MAG=∠DAG,又AG为公共边,∴△AGM≌△AGD(ASA),∴GM=GD,又∵∠AGM=∠AGD=90°,∴AE垂直平分DM,故①正确;②如图,连接BD与AC交于点O,交AG于点H,连接HM,∵四边形ABCD是正方形,∴AC⊥BD,即DO⊥AM,∵AE垂直平分DM,∴HM=HD,当点P与点H重合时,PM+PN的值最小,此时PM+PN=HM+HO=HD+HO=DO,即PM+PN的最小值是DO的长,∵正方形ABCD的边长为4,∴AC=BD=,∴,即PM+PN的最小值为,故②错误;③∵AE垂直平分DM,∴∠DGE=90°,∵∠ADC=90°,∴∠DGE=∠ADE,又∵∠DEG=∠AED,∴△DGE∽△ADE,∴,即DE2=GE•AE,由①知CF=DE,∴CF2=GE•AE,故③正确;④∵AE垂直平分DM,∴AM=AD=4,又,∴,故④错误;综上,正确的是:①③,故选:D.【点评】本题考查了相似三角形的判定与性质,正方形的性质,三角形全等的判定与性质,线段垂直平分线的判定与性质,最短路径问题等知识点,熟练掌握这些知识点是解题的关键.7.(2023•恩施州)如图,在△ABC中,DE∥BC分别交AC,AB于点D,E,EF∥AC交BC于点F,,BF=8,则DE的长为()A. B. C.2 D.3【分析】由DE∥BC,EF∥AC,得四边形EFCD是平行四边形,DE=CF,设DE=CF=x,由△AED∽△ABC,=可得=,即可解得答案.【解答】解:∵DE∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,设DE=CF=x,∵BF=8,∴BC=BF+CF=8+x,∵DE∥BC,∴△AED∽△ABC,∴=,∵=,∴=,∴=,即=,解得x=,故选:A.【点评】本题考查相似三角形的判定与性质,涉及平行四边形的判定与性质,解题的关键是利用相似三角形对应边成比例,列出方程解决问题.8.(2023•内江)如图,在△ABC中,点D、E为边AB的三等分点,点F、G在边BC上,AC∥DG∥EF,点H为AF与DG的交点.若AC=12,则DH的长为()A.1 B. C.2 D.3【分析】首先根据点D、E为边AB的三等分点得AB=3BE,AE=2AD,再根据EF∥AC得△BEF和△BAC相似,从而可求出EF=4,然后根据DG∥EF得△ADH和△AEF相似,进而可求出DH的长.【解答】解:∵点D、E为边AB的三等分点,∴AD=DE=EB,∴AB=3BE,AE=2AD,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BE:AB,∵AC=12,AB=3BE,∴EF:12=BE:3BE,∴EF=4,∵DG∥EF,∴△ADH∽△AEF,∴DH:EF=AD:AE,∵EF=4,AE=2AD,∴DH:4=AD:2AD,∴DH=2.故选:C.【点评】此题主要考查了相似三角形的判定和性质,解答此题的关键是理解平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似,相似三角形的对应边成比例.9.(2023•邵阳)如图,CA⊥AD,ED⊥AD,点B是线段AD上的一点,且CB⊥BE.已知AB=8,AC=6,DE=4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【分析】(1)利用同角的余角相等得∠C=∠DBE,可证明结论;(2)根据相似三角形的性质即可求出答案.【解答】(1)证明:∵CA⊥AD,ED⊥AD,CB⊥BE,∴∠A=∠CBE=∠D=90°,∴∠C+∠CBA=90°,∠CBA+∠DBE=90°,∴∠C=∠DBE,∴△ABC∽△DEB;(2)解:∵△ABC∽△DEB,∴=,∴=,∴BD=3.【点评】本题主要考查了相似三角形的性质和判定,利用同角的余角相等得∠C=∠DBE是解决问题的关键.10.(2023•云南)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA•AC=DC•AB.设△ABE的面积为S1,△ACD的面积为S2.(1)判断直线EA与⊙O的位置关系,并证明你的结论;(2)若BC=BE,S2=mS1,求常数m的值.【分析】(1)通过证明△ABC∽△DAC,可得∠ACB=∠ACD,可证OA⊥DE,即可求解;(2)设BO=OC=OA=a,则BC=2a,由相似三角形的性质可求CD的长,即可求解.【解答】解:(1)AE与⊙O相切,理由如下:如图,连接OA,∵DA•AC=DC•AB,∴,∵BC是⊙O的直径,∴∠BAC=90°=∠ADC,∴△ABC∽△DAC,∴∠ACB=∠ACD,∵OA=OC,∴∠OAC=∠ACB=∠ACD,∴OA∥CD,∴∠OAE=∠CDE=90°,∴OA⊥DE,又∵OA为半径,∴AE与⊙O相切;(2)如图,∵OA∥CD,∴△AOE∽△DCE,∴,设BO=OC=OA=a,则BC=2a,∵BC=BE=2a,∴S△ABE=S△ABC,EO=3a,EC=4a,∴,∴CD=a,∵△ABC∽△DAC,∴,∴AC2=BC•CD=a2,∵△ABC∽△DAC,∴=()2=,∴S2=S1,∴m=.【点评】本题考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,灵活运用这些性质解决问题是解题的关键.11.(2023•苏州)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,AC=,BC=2,点F在AB上,连接CF并延长,交⊙O于点D,连接BD,作BE⊥CD,垂足为E.(1)求证:△DBE∽△ABC;(2)若AF=2,求ED的长.【分析】(1)根据圆周角定理得∠BDE=∠BAC,进而可以证明结论;(2)过点C作CG⊥AB,垂足为G,证明△DBE∽△ABC,得=,代入值即可解决问题.【解答】(1)证明:∵AB为直径,∴∠ACB=90°,∵BE⊥CD,∴∠BED=90°,∵所对的圆周角为∠BDE和∠BAC,∴∠BDE=∠BAC,∴△DBE∽△ABC;(2)解:如图,过点C作CG⊥AB,垂足为G,∵∠ACB=90°,AC=,BC=2,∴AB==5,∵CG⊥AB,∴AG=ACcosA=×=1,∵AF=2,∴FG=AG=1,∴AC=FC,∴∠CAF=∠CFA=∠BFD=∠BDF,∴BD=BF=AB﹣AF=5﹣2=3,∵△DBE∽△ABC,∴=,∴=,∴ED=.【点评】本题考查圆周角定理、相似三角形的判定与性质、解直角三角形、勾股定理等知识点,解决本题的关键是得到△DBE∽△ABC.热点3.应用相似三角形知识解决实际问题12.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为()A.6.4m B.8m C.9.6m D.12.5m【分析】根据镜面反射的性质,△ABC∽△EDC,再根据相似三角形对应边成比例列式求解即可.【解答】解:如图:∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵∠ACB=∠DCE,∴△ABC∽△EDC,∴,即,∴DE=8(m),故选:B.【点评】本题考查了相似三角形的应用.应用镜面反射的基本性质,得出三角形相似,再运用相似三角形对应边成比例即可解答.13.(2023•镇江)如图,用一个卡钳(AD=BC,==)测量某个零件的内孔直径AB,量得CD长度为6cm,则AB等于18cm.【分析】根据相似三角形的判定和性质,可以求得AB的长.【解答】解:∵==,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=6cm,∴AB=6×3=18(cm),故答案为:18.【点评】本题考查相似三角形的应用,求出AB的值是解答本题的关键.14.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为18.2米.【分析】过点F作FG⊥CD,垂足为G,延长FG交AB于点H,根据题意可得:FH⊥AB,AH=CG=EF=1.4米,AC=GH=20米,CE=FG=10米,从而可得∠DGF=∠BHF=90°,DG=5.6米,然后证明A字模型相似三角形△FDG∽△FBH,从而利用相似三角形的性质求出BH的长,最后利用线段的和差关系进行计算,即可解答.【解答】解:过点F作FG⊥CD,垂足为G,延长FG交AB于点H,由题意得:FH⊥AB,AH=CG=EF=1.4米,AC=GH=20米,CE=FG=10米,∴∠DGF=∠BHF=90°,∵CD=7米,∴DG=CD﹣CG=7﹣1.4=5.6(米),∵∠DFG=∠BFH,∴△FDG∽△FBH,∴=,∴=,∴BH=16.8,∴AB=BH+AH=16.8+1.4=18.2(米),∴塔的高度为18.2米,故答案为:18.2.【点评】本题考查了相似三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.15.(2023•娄底)鲜艳的中华人民共和国国旗始终是当代中华儿女永不褪色的信仰,国旗上的每颗星都是标准五角星,为了增强学生的国家荣誉感、民族自豪感等,数学老师组织学生对五角星进行了较深入的研究,延长正五边形的各边直到不相邻的边相交,得到一个标准五角星,如图,正五边形ABCDE的边BA、DE的延长线相交于点F,∠EAF的平分线交EF于点M.(1)求证:AE2=EF•EM;(2)若AF=1,求AE的长;(3)求的值.【分析】(1)根据正五边形的性质可得∠BAE=∠AED=108°,从而利用平角定义可得∠FAE=∠AEF=72°,进而利用三角形内角和定理可得∠F=36°,然后利用角平分线的定义可得∠FAM=∠MAE=36°,从而可得∠F=∠MAE,进而可证△AEM∽△FEA,最后利用相似三角形的性质进行计算,即可解答;(2)设AE=x,利用(1)的结论可得:∠F=∠FAM=36°,从而可得FM=AM,在利用(1)的结论可得:∠FAE=∠AEF=72°,从而可得FA=FE=1,然后利用三角形的外角性质可得∠AME=∠AEF=72°,从而可得AM=AE,进而可得AM=AE=FM=x,再利用线段的和差关系可得ME=1﹣x,最后利用(1)的结论可得:AE2=EF•EM,从而可得x2=1•(1﹣x),进行计算即可解答;(3)连接BE,CE,根据正五边形的性质可得AB=AE=DE=CD=BC,∠BAE=∠AED=∠EDC=∠ABC=∠BCD=108°,从而可得△ABE≌△DCE,再利用等腰三角形的性质可得∠ABE=∠AEB=36°,∠DEC=∠DCE=36°,从而可得∠EBC=∠ECB=72°,然后利用(1)的结论可得:∠FAE=∠FEA=72°,从而可证利用ASA可证△FAE≌△EBC,再利用(2)的结论可得:=,从而可得=,进而可得=,最后设△ABE的面积为(﹣1)k,则△AEF的面积为2k,从而可得△ABE的面积=△DEC的面积=(﹣1)k,△AEF的面积=△BCE的面积=2k,进而可求出五边形ABCDE的面积=2k,再进行计算即可解答.【解答】(1)证明:∵五边形ABCDE是正五边形,∴∠BAE=∠AED=108°,∴∠FAE=180°﹣∠BAE=72°,∠AEF=180°﹣∠AED=72°,∴∠F=180°﹣∠FAE﹣∠AEF=36°,∵AM平分∠FAE,∴∠FAM=∠MAE=∠FAE=36°,∴∠F=∠MAE,∵∠AEM=∠AEF,∴△AEM∽△FEA,∴=,∴AE2=EF•EM;(2)解:设AE=x,由(1)可得:∠F=∠FAM=36°,∴FM=AM,由(1)可得:∠FAE=∠AEF=72°,∴FA=FE=1,∵∠AME=∠F+∠FAM=72°,∴∠AME=∠AEF=72°,∴AM=AE,∴AM=AE=FM=x,∴ME=EF﹣FM=1﹣x,由(1)可得:AE2=EF•EM,∴x2=1•(1﹣x),解得:x=或x=(舍去),∴AE=,∴AE的长为;(3)连接BE,CE,∵五边形ABCDE是正五边形,∴AB=AE=DE=CD=BC,∠BAE=∠AED=∠EDC=∠ABC=∠BCD=108°,∴△ABE≌△DCE(SAS),∵AB=AE,ED=DC,∠BAE=∠CDE=108°,∴∠ABE=∠AE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 坛紫菜R-藻蓝蛋白结构特性及抗衰老机制研究
- 2025年度特色美食街经营管理承包协议3篇
- 二零二四年天然气区块探矿权出让与采矿权合作开发协议3篇
- 专项法律事务代理服务协议版
- 二零二五版快递驾驶员合同续签及终止条件协议3篇
- 二零二五年度现代农业科技园合作开发合同3篇
- 2025年私立学校教师教学成果转化与应用推广合同3篇
- 2024离婚财产分割协议公证注意事项
- 二零二五年度临时用电安全教育与宣传服务合同4篇
- 2025版楼顶景观照明设计与安装服务合同4篇
- 2025年度版权授权协议:游戏角色形象设计与授权使用3篇
- 2024年08月云南省农村信用社秋季校园招考750名工作人员笔试历年参考题库附带答案详解
- 防诈骗安全知识培训课件
- 心肺复苏课件2024
- 2024年股东股权继承转让协议3篇
- 2024-2025学年江苏省南京市高二上册期末数学检测试卷(含解析)
- 四川省名校2025届高三第二次模拟考试英语试卷含解析
- 《城镇燃气领域重大隐患判定指导手册》专题培训
- 湖南财政经济学院专升本管理学真题
- 考研有机化学重点
- 全国身份证前六位、区号、邮编-编码大全
评论
0/150
提交评论