《生物质颗粒堆垛内自维持阴燃反应分析综述》2200字_第1页
《生物质颗粒堆垛内自维持阴燃反应分析综述》2200字_第2页
《生物质颗粒堆垛内自维持阴燃反应分析综述》2200字_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

生物质颗粒堆垛内自维持阴燃反应分析综述生物质颗粒在堆积存储时,与空气中的氧气发生放热反应,虽然室温下氧化反应非常缓慢,但如果产生的热量不能及时散失,会导致材料内部温度升高,当材料内部温度过高时,会进一步引发阴燃反应从而导致火灾。阴燃是一种低温、缓慢、无焰的燃烧反应形式,由固相燃料表面发生氧化反应放出的热量维持传播ADDINEN.CITE<EndNote><Cite><Author>J</Author><Year>1979</Year><RecNum>387</RecNum><DisplayText><styleface="superscript">[6,9]</style></DisplayText><record><rec-number>387</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">387</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>OhlemillerTJ</author><author>BellanJ</author><author>RogersF</author></authors></contributors><titles><title>Amodelofsmolderingcombustionappliedtoflexiblepolyurethanefoams</title><secondary-title>CombustionandFlame</secondary-title></titles><periodical><full-title>CombustionandFlame</full-title></periodical><pages>197-215</pages><volume>36</volume><dates><year>1979</year></dates><isbn>0010-2180</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite><Cite><Author>Steen-Hansen</Author><Year>2018</Year><RecNum>325</RecNum><record><rec-number>325</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">325</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Steen-HansenA</author><author>MikalsenRF</author><author>JensenUE</author></authors></contributors><auth-address>RISEFireResearchTrondheim,Tiller,Norway;WesternNorwayUniversityofAppliedSciences(HVL),Haugesund,Norway;OttovonGuerickeUniversityMagdeburg,Magdeburg,Germany;NorwegianUniversityofScienceandTechnology(NTNU),Trondheim,Norway</auth-address><titles><title>Smoulderingcombustioninloose-fillwoodfibrethermalinsulation:Anexperimentalstudy</title><secondary-title>FireTechnology</secondary-title></titles><periodical><full-title>FireTechnology</full-title></periodical><pages>1585-1608</pages><volume>54</volume><number>6</number><dates><year>2018</year></dates><isbn>1572-8099</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[6,9]。阴燃通常是自维持的反应过程,反应释放的热量足以使该反应在没有外部能量输入的情况下持续进行ADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2017</Year><RecNum>390</RecNum><DisplayText><styleface="superscript">[10]</style></DisplayText><record><rec-number>390</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456502">390</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>WangHZ</author><author>vanEykPJ</author><author>MedwellPR</author><author>BirzerCH</author><author>TianZF</author><author>PossellM</author></authors></contributors><titles><title>Effectsofoxygenconcentrationonradiation-aidedandself-sustainedsmolderingcombustionofradiatapine</title><secondary-title>Energy&Fuels</secondary-title></titles><periodical><full-title>Energy&Fuels</full-title></periodical><pages>8619-8630</pages><volume>31</volume><number>8</number><section>8619</section><dates><year>2017</year></dates><isbn>0887-0624 1520-5029</isbn><urls></urls><electronic-resource-num>10.1021/acs.energyfuels.7b00646</electronic-resource-num></record></Cite></EndNote>[10]。与有焰燃烧相比,阴燃是在燃料或多孔基体的固体表面发生氧化反应和放热,反应的峰值温度、升温速率和传播速率较低;而有焰燃烧是在燃料周围的气相发生氧化反应和放热ADDINEN.CITE<EndNote><Cite><RecNum>392</RecNum><DisplayText><styleface="superscript">[11]</style></DisplayText><record><rec-number>392</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456535">392</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ReinG</author></authors></contributors><titles><title>Smoulderingcombustionphenomenainscienceandtechnology</title><secondary-title>InternationalReviewofChemicalEngineering</secondary-title></titles><periodical><full-title>InternationalReviewofChemicalEngineering</full-title></periodical><pages>3-18</pages><volume>1</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[11]。阴燃反应的峰值温度通常在500~700°C左右,其平均燃烧热为6~12kJ/g;有焰燃烧的峰值温度在1500~1800°C左右,平均燃烧热为16~30kJ/gADDINEN.CITEADDINEN.CITE.DATA[11-13]。由于这些特性,阴燃的传播速度较慢,一般在10~30mm/h左右,比有焰燃烧的传播速度约低两个数量级ADDINEN.CITE<EndNote><Cite><RecNum>392</RecNum><DisplayText><styleface="superscript">[11]</style></DisplayText><record><rec-number>392</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456535">392</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ReinG</author></authors></contributors><titles><title>Smoulderingcombustionphenomenainscienceandtechnology</title><secondary-title>InternationalReviewofChemicalEngineering</secondary-title></titles><periodical><full-title>InternationalReviewofChemicalEngineering</full-title></periodical><pages>3-18</pages><volume>1</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[11]。根据阴燃波传播方向与氧化剂流动方向的异同,可以分为正向阴燃和反向阴燃。当两者方向相同时为正向阴燃,方向相反时为反向阴燃ADDINEN.CITE<EndNote><Cite><Author>J</Author><Year>1983</Year><RecNum>386</RecNum><DisplayText><styleface="superscript">[14]</style></DisplayText><record><rec-number>386</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">386</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>OhlemillerTJ</author><author>LuccaDA</author></authors></contributors><titles><title>Anexperimentalcomparisonofforwardandreversesmolderpropagationinpermeablefuelbeds</title><secondary-title>CombustionandFlame</secondary-title></titles><periodical><full-title>CombustionandFlame</full-title></periodical><pages>131-147</pages><volume>54</volume><number>1-3</number><dates><year>1983</year></dates><isbn>0010-2180</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[14]。根据阴燃的空间燃烧特性,又可以分为水平阴燃和竖直阴燃。目前提出的阴燃模型包括一维和多维模型。现实中的阴燃传播是多维且不规则的,但多维阴燃模型是多个一维模型的混合,而一维阴燃模型的研究较为方便,因此被研究的最多ADDINEN.CITE<EndNote><Cite><Author>郑克明</Author><Year>2017</Year><RecNum>338</RecNum><DisplayText><styleface="superscript">[15]</style></DisplayText><record><rec-number>338</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">338</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>郑克明</author></authors><tertiary-authors><author>王德明,</author></tertiary-authors></contributors><titles><title>煤田火区煤阴燃特性及治理研究</title></titles><keywords><keyword>阴燃特性</keyword><keyword>火风压</keyword><keyword>供氧通道</keyword><keyword>最低供风速率</keyword><keyword>堵漏技术</keyword><keyword>露天矿煤火</keyword></keywords><dates><year>2017</year></dates><publisher>中国矿业大学</publisher><work-type>硕士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[15]。迄今为止,已经有许多关于阴燃的研究报道。阴燃是一个受颗粒粒径、床层渗透率、密度、含水率、初始温度和火源等影响的复杂反应过程ADDINEN.CITE<EndNote><Cite><Author>Hagen</Author><Year>2010</Year><RecNum>357</RecNum><DisplayText><styleface="superscript">[16]</style></DisplayText><record><rec-number>357</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">357</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>HagenBC</author><author>FretteV</author><author>KleppeG</author><author>ArntzenBJ</author></authors></contributors><auth-address>StordHaugesundUniversityCollege,Bjørnsonsgt.45,N-5528Haugesund,Norway;;DepartmentofPhysicsandTechnology,UniversityofBergen,Pb.7803,N-5020Bergen,Norway</auth-address><titles><title>Onsetofsmolderingincotton:Effectsofdensity</title><secondary-title>FireSafetyJournal</secondary-title></titles><periodical><full-title>FireSafetyJournal</full-title></periodical><pages>73-80</pages><volume>46</volume><number>3</number><keywords><keyword>Smolder</keyword><keyword>Ignition</keyword><keyword>Cotton</keyword><keyword>Density</keyword></keywords><dates><year>2010</year></dates><isbn>0379-7112</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[16]。在阴燃引燃过程中,热通量、点火时间、空气流量等因素是主要研究内容。WangADDINEN.CITE<EndNote><Cite><Author>Wang</Author><Year>2016</Year><RecNum>391</RecNum><DisplayText><styleface="superscript">[17]</style></DisplayText><record><rec-number>391</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456521">391</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>WangHZ</author><author>vanEykPJ</author><author>MedwellPR</author><author>BirzerCH</author><author>TianZF</author><author>PossellM</author></authors></contributors><titles><title>Identificationandquantitativeanalysisofsmolderingandflamingcombustionofradiatapine</title><secondary-title>Energy&Fuels</secondary-title></titles><periodical><full-title>Energy&Fuels</full-title></periodical><pages>7666-7677</pages><volume>30</volume><number>9</number><section>7666</section><dates><year>2016</year></dates><isbn>0887-0624 1520-5029</isbn><urls></urls><electronic-resource-num>10.1021/acs.energyfuels.6b00314</electronic-resource-num></record></Cite></EndNote>[17]通过时间和空间温度分布、质量损失规律和气体分析对生物质颗粒阴燃燃烧和有焰燃烧的起始特性进行了实验研究,分析了阴燃燃烧与有焰燃烧的区别,发现有焰燃烧的峰值温度、升温速率和平均质量损失速率远远高于阴燃燃烧。CarvalhoADDINEN.CITE<EndNote><Cite><Author>Carvalho</Author><Year>2002</Year><RecNum>378</RecNum><DisplayText><styleface="superscript">[18]</style></DisplayText><record><rec-number>378</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">378</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>CarvalhoER</author><author>VerasCAG</author><author>CarvalhoJrJA</author></authors></contributors><auth-address>DepartamentodeEnergia,UniversidadeEstadualPaulista(UNESP),Av.AribertoPereiradaCunhano.333,CEP12516-410,Guaratinguetá,SP,Brazil;;UniversidadedeBrası́lia,Brası́lia,DF,Brazil;;InstitutoNacionaldePesquisasEspaciais(INPE),CachæiraPaulistra,SP,Brazil</auth-address><titles><title>Experimentalinvestigationofsmoulderinginbiomass</title><secondary-title>BiomassandBioenergy</secondary-title></titles><periodical><full-title>BiomassandBioenergy</full-title></periodical><pages>283-294</pages><volume>22</volume><number>4</number><keywords><keyword>Smouldering</keyword><keyword>Biomasscombustion</keyword><keyword>Heattransfer</keyword><keyword>Machaeriumanguwtifolium</keyword></keywords><dates><year>2002</year></dates><isbn>0961-9534</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[18]通过实验研究了木材的阴燃过程,检查引发和控制阴燃过程稳定性的参数,发现供氧和热损失是阴燃过程自维持的主要参数。RondaADDINEN.CITE<EndNote><Cite><Author>Ronda</Author><Year>2017</Year><RecNum>337</RecNum><DisplayText><styleface="superscript">[19]</style></DisplayText><record><rec-number>337</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">337</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>RondaA</author><author>DellaZassaM</author><author>BiasinA</author><author>Martin-LaraMA</author><author>CanuP</author></authors></contributors><auth-address>DepartmentofChemicalEngineering,UniversityofGranada,18071Granada,Spain;;DepartmentofIndustrialEngineering,UniversityofPadua,35131Padova,Italy</auth-address><titles><title>Experimentalinvestigationonthesmoulderingofpinebark</title><secondary-title>Fuel</secondary-title></titles><periodical><full-title>Fuel</full-title></periodical><pages>81-94</pages><volume>193</volume><keywords><keyword>Pinebark</keyword><keyword>Smouldering</keyword><keyword>Combustion</keyword><keyword>Biomassself-heating</keyword><keyword>Thermalignitionofbiomass</keyword></keywords><dates><year>2017</year></dates><isbn>0016-2361</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[19]在实验室条件下对松树皮样品进行了几十克范围内的自热实验,研究了颗粒大小、含水率、材料压实度、加热速度和储存几何形状对阴燃开始和发展的影响,结果表明松树皮在190~240°C内触发自热行为。ReinADDINEN.CITE<EndNote><Cite><Author>Rein</Author><Year>2008</Year><RecNum>364</RecNum><DisplayText><styleface="superscript">[20]</style></DisplayText><record><rec-number>364</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">364</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ReinG</author><author>CohenS</author><author>SimeoniA</author></authors></contributors><auth-address>BRECentreforFireSafetyEngineering,UniversityofEdinburgh,King’sBuildings,AGB,EdinburghEH93JL,UK;;UMRCNRS6134–SPE,UniversitàdiCorsica,France</auth-address><titles><title>Carbonemissionsfromsmoulderingpeatinshallowandstrongfronts</title><secondary-title>ProceedingsoftheCombustionInstitute</secondary-title></titles><periodical><full-title>ProceedingsoftheCombustionInstitute</full-title></periodical><pages><styleface="normal"font="default"charset="178"size="100%">2489-2496</style></pages><volume>32</volume><keywords><keyword>Biomassburning</keyword><keyword>Carbonmonoxide<ce:keyword>Carbondioxide</keyword><keyword>Emissionfactor</keyword><keyword>Smoldering</keyword></keywords><dates><year>2008</year></dates><isbn>1540-7489</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[20]研究了含水率对泥炭阴燃过程的影响,结果表明含水率较低时生物质阴燃会产生更广泛的热解前沿,而在高含水率条件下阴燃反应可能会熄灭。何芳ADDINEN.CITE<EndNote><Cite><Author>何芳</Author><Year>2014</Year><RecNum>348</RecNum><DisplayText><styleface="superscript">[21]</style></DisplayText><record><rec-number>348</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">348</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>何芳</author><author>易维明</author><author><styleface="normal"font="default"size="100%">李志合</style><styleface="normal"font="default"charset="134"size="100%">,等</style></author></authors></contributors><auth-address>山东理工大学农业工程和食品科学学院;</auth-address><titles><title>生物质内部燃烧特性的阴燃实验研究</title><secondary-title>工程热物理学报</secondary-title></titles><periodical><full-title>工程热物理学报</full-title></periodical><pages>792-795</pages><volume>35</volume><number>04</number><keywords><keyword>生物质</keyword><keyword>燃烧</keyword><keyword>阴燃实验</keyword></keywords><dates><year>2014</year></dates><isbn>0253-231X</isbn><call-num>11-2091/O4</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[21]通过阴燃实验的方法研究了生物质内部的燃烧特性,考察了物料种类、含水率、孔隙尺寸对燃烧温度、干燥前沿及炭氧化前沿的移动速度、裂纹和气体成分等的影响,发现物料内最高温度随燃料种类、孔隙尺寸略有变化,几乎不随含水率变化。许多学者对阴燃传播过程开展了相关研究,主要研究不同因素对阴燃传播规律及传播速度的影响。HeADDINEN.CITE<EndNote><Cite><Author>He</Author><Year>2014</Year><RecNum>346</RecNum><DisplayText><styleface="superscript">[22]</style></DisplayText><record><rec-number>346</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">346</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>HeF</author><author>YiWM</author><author>LiYJ</author><author>ZhaJW</author><author>LuoB</author></authors></contributors><auth-address>ShandongUniversityofTechnology,Zibo,Shandong255049,PRChina</auth-address><titles><title>Effectsoffuelpropertiesonthenaturaldownwardsmolderingofpiledbiomasspowder:Experimentalinvestigation</title><secondary-title>BiomassandBioenergy</secondary-title></titles><periodical><full-title>BiomassandBioenergy</full-title></periodical><pages>288-296</pages><volume>67</volume><keywords><keyword>Fueltype</keyword><keyword>Moisturecontent</keyword><keyword>Particlesize</keyword><keyword>Biomass</keyword><keyword>Smoldering</keyword></keywords><dates><year>2014</year></dates><isbn>0961-9534</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[22]为了验证一维生物质阴燃燃烧模型的有效性,通过实验研究了燃料类型、含水率和粒度对生物质粉末自然向下阴燃的影响,发现炭氧化前沿的传播速度受碳密度和灰分含量的影响较大,几乎不受含水量和粒径的影响。ChenADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2015</Year><RecNum>343</RecNum><DisplayText><styleface="superscript">[23]</style></DisplayText><record><rec-number>343</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">343</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ChenHX</author><author>ReinGu</author><author>LiuNA</author></authors></contributors><auth-address>StateKeyLaboratoryofFireScience,UniversityofScienceandTechnologyofChina,Hefei,Anhui230026,PRChina;;DepartmentofMechanicalEngineering,ImperialCollege,London,UK</auth-address><titles><title>Numericalinvestigationofdownwardsmolderingcombustioninanorganicsoilcolumn</title><secondary-title>InternationalJournalofHeatandMassTransfer</secondary-title></titles><periodical><full-title>InternationalJournalofHeatandMassTransfer</full-title></periodical><pages>253-261</pages><volume>84</volume><keywords><keyword>Self-sustainedsmoldering</keyword><keyword>Criticalmoisturecontent</keyword><keyword>Organicsoil</keyword><keyword>Numericalmodel</keyword></keywords><dates><year>2015</year></dates><isbn>0017-9310</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[23]通过建立一个阴燃向下蔓延通过一根有机土柱的数值模型,研究发现影响有机土壤自维持阴燃的主要因素是水分含量、无机物含量、堆积密度和阴燃热。SmuckerADDINEN.CITE<EndNote><Cite><Author>Smucker</Author><Year>2019</Year><RecNum>322</RecNum><DisplayText><styleface="superscript">[24]</style></DisplayText><record><rec-number>322</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">322</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>SmuckerBD</author><author>MulkyTC</author><author>CowanDA</author><author>NiemeyerKE</author><author>BlunckDL</author></authors></contributors><auth-address>SchoolofMechanical,Industrial,andManufacturingEngineering,OregonStateUniversity,Corvallis,OR,97331,USA</auth-address><titles><title>Effectsoffuelcontentanddensityonthesmolderingcharacteristicsofcelluloseandhemicellulose</title><secondary-title>ProceedingsoftheCombustionInstitute</secondary-title></titles><periodical><full-title>ProceedingsoftheCombustionInstitute</full-title></periodical><pages>4107-4116</pages><volume>37</volume><number>3</number><keywords><keyword>Wildlandfires</keyword><keyword>Smoldering</keyword><keyword>Solidcombustion</keyword></keywords><dates><year>2019</year></dates><isbn>1540-7489</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[24]为确定密度和燃料浓度对纤维素和半纤维素混合物阴燃特性的影响,测量了不同密度和不同比例纤维素样品的向下阴燃传播速度和水平阴燃传播速度,发现在一定的堆积密度下,阴燃传播速度随着纤维素含量的降低而增加。QiADDINEN.CITE<EndNote><Cite><Author>Qi</Author><Year>2016</Year><RecNum>339</RecNum><DisplayText><styleface="superscript">[25]</style></DisplayText><record><rec-number>339</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">339</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>QiGS</author><author>WangDM</author><author>ZhengKM</author><author>TangY</author><author>LuXX</author></authors></contributors><auth-address>KeyLaboratoryofCoalMethaneandFireControl,MinistryofEducation,ChinaUniversityofMiningandTechnology,Xuzhou,China;;SchoolofSafetyEngineering,ChinaUniversityofMiningandTechnology,Xuzhou,China</auth-address><titles><title>Smolderingcombustionofcoalunderforcedairflow:experimentalinvestigation</title><secondary-title>JournalofFireSciences</secondary-title></titles><periodical><full-title>JournalofFireSciences</full-title></periodical><pages>267-288</pages><volume>34</volume><number>4</number><keywords><keyword>Coal</keyword><keyword>forwardsmoldering</keyword><keyword>reversesmoldering</keyword><keyword>forcedairflow</keyword></keywords><dates><year>2016</year></dates><isbn>0734-9041</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[25]为获得煤的阴燃特性,进行了不同风量下竖直正向阴燃和反向阴燃实验,并对阴燃燃烧过程、速度和温度进行了分析,结果表明正向阴燃和反向阴燃的燃烧过程虽然有显著差异,但阴燃速度相同,均随空气流量单调增加,空气流量越大,耗氧率越高。一些学者对阴燃过程进行了数值模拟研究。贾宝山ADDINEN.CITE<EndNote><Cite><Author>贾宝山</Author><Year>2007</Year><RecNum>366</RecNum><DisplayText><styleface="superscript">[26]</style></DisplayText><record><rec-number>366</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">366</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>贾宝山</author><author>解茂昭</author></authors></contributors><auth-address>大连理工大学能源与动力学院,大连理工大学能源与动力学院大连116024,辽宁工程技术大学安全科学与工程学院,阜新123000,大连116024</auth-address><titles><title>聚氨酯泡沫燃料正向阴燃传播特性的数值模拟</title><secondary-title><styleface="normal"font="default"charset="134"size="100%">东南大学学报(英文版)</style></secondary-title></titles><periodical><full-title>东南大学学报(英文版)</full-title></periodical><pages>278-284</pages><volume>23</volume><number>02</number><keywords><keyword>聚氨酯泡沫</keyword><keyword>正向阴燃</keyword><keyword>多孔介质</keyword><keyword>阴燃速度</keyword><keyword>数值模拟</keyword></keywords><dates><year>2007</year></dates><isbn>1003-7985</isbn><call-num>32-1325/N</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[26]建立了聚氨酯泡沫阴燃反应的二维两相流数学模型,预测了固相温度和固相成分(聚氨酯泡沫、焦炭和灰分)的变化情况,得到了阴燃平均传播速度和平均最高温度,研究了入口空气流速和燃料性能(导热系数、比热、密度和孔径)对阴燃传播的影响,结果表明随着进气速度的增加,阴燃速度和阴燃温度大致呈线性增加,燃料密度是决定阴燃传播最重要的因素。ZanoniADDINEN.CITE<EndNote><Cite><Author>Zanoni</Author><Year>2019</Year><RecNum>324</RecNum><DisplayText><styleface="superscript">[27]</style></DisplayText><record><rec-number>324</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">324</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ZanoniMAB</author><author>ToreroJL.</author><author>GerhardJI</author></authors></contributors><auth-address>DepartmentofCivilandEnvironmentalEngineering,TheUniversityofWesternOntario,SpencerEngineeringBuilding,Rm.3029,London,OntarioN6A5B9,Canada;;A.JamesClarkSchoolofEngineering,TheUniversityofMaryland,CollegePark,MD20742,USA</auth-address><titles><title>Delineatingandexplainingthelimitsofself-sustainedsmoulderingcombustion</title><secondary-title>CombustionandFlame</secondary-title></titles><periodical><full-title>CombustionandFlame</full-title></periodical><pages>78-92</pages><volume>201</volume><keywords><keyword>Smoulderingcombustion</keyword><keyword>Localthermalnon-equilibrium</keyword><keyword>Porousmedium</keyword><keyword>Energybalance</keyword><keyword>Heatlosses</keyword><keyword>Extinction</keyword></keywords><dates><year>2019</year></dates><isbn>0010-2180</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[27]通过一个一维数值模型模拟了利用阴燃处理被沥青污染砂土的情况,量化了阴燃过程中化学反应和传热过程在空间和时间上的复杂相互作用,证实了局部能量平衡在反应熄灭时变为负值,而全局能量平衡在较早时变为负值。RostamiADDINEN.CITE<EndNote><Cite><Author>Rostami</Author><Year>2003</Year><RecNum>377</RecNum><DisplayText><styleface="superscript">[28]</style></DisplayText><record><rec-number>377</rec-number><foreign-keys><keyapp="EN"db-id="9wtpaefesfdx0jevre3peadydp0ww0pe22de"timestamp="1610456441">377</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>RostamiA</author><author>MurthyJ</author><author>HajaligolM</author></authors></contributors><auth-address>PhilipMorrisUSA,ResearchCenter,P.O.Box26583,Richmond,VA23261,USA;;DepartmentofMechanicalEngineering,CarnegieMellonUniversity,Pittsburgh,PA15213,USA</auth-address><titles><title>Modelingofasmolderingcigarette</title><secondary-title>JournalofAnalyticalandAppliedPyrolysis</secondary-title></titles><periodical><full-title>JournalofAnalyticalandAppliedPyrolysis</full-title></periodical><pages>281-301</pages><volume>66</volume><number>1-2</number><keywords><keyword>Modeling</keyword><keyword>Smoldering</keyword><keyword>Combustion</keyword><keyword>Cigarettesmoldering</keyword><keyword>Burnvelocity</keyword></keywords><dates><year>2003</year></dates><isbn>0165-2370</isbn><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[28]建立了烟丝自然阴燃的瞬态二维模型,模型中假设气相和固相温度不同,通过相间热交换相互作用,对不同工况和边界条件下的阴燃过程进行模拟,研究了燃料密度的变化、焦炭的形成和氧化、阴燃速度和阴燃温度分布等,发现阴燃过程主要是由氧气向燃烧区的扩散控制的,纸的渗透性对燃烧过程的发展和维持影响很大。CostaADDINEN.CITE<EndNote><Cite><Author>Costa</Author><Year>2004</Year><RecNum>375</RecNum><DisplayText><styleface="superscript">[29]</style></DisplayText><record><rec-number>375</rec-number><foreign-keys><

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论