版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华师大版九年级上册数学期中考试试题一、选择题。(每小题只有一个正确答案)1.下列根式是最简二次根式的是()A.B.C.D.2.下列运算正确的是()A.B.C.D.3.已知关于的方程有实数根,则的取值范围是()A. B. C.且 D.无法确定4.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是A.B.C.△ADE∽△ABCD.5.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为().A.; B.; C.; D..6.如图,在△ABC中,D、F分别是AB、BC上的点,且DF∥AC,若S△BDF:S△DFC=1:4,则S△BDF:S△DCA=()A.1:16 B.1:18 C.1:20 D.1:247.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()A.①②③ B.① C.①② D.②③8.在中,,则边长为()A.7 B.8 C.7或17 D.8或179.如图,在直角中,延长斜边到点C,使,连接,若tanB=,则的值()A. B. C. D.10.已知△ABC∽△A1B1C1,且∠A=60°,∠B1=40°,则∠C1的度数为()A.40° B.60° C.80° D.100°二、填空题11.若,则______________.12.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是_____.13.如图,在一块长为22m、宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m2.若设道路宽为xm,则根据题意可列方程为.14.如图,在矩形ABCD中,点E为AB的中点,点F为射线AD上一动点,EF与AEF关于EF所在直线对称,连接AC,分别交E、EF于点M、N,AB=2,AD=2.若EMN与AEF相似,则AF的长为_____.三、解答题15.(1)计算:(2)解下列方程①②(配方法)16.先化简,再求值:,其中x满足x2﹣4x+3=0.17.已知关于的一元二次方程.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为,且,求的值.18.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?19.如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.(1)求证:△ABE∽△DEF.(2)若正方形的边长为4,求BG的长.20.如图,在中,,,垂足分别为,.求证:(1);(2).21.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵(y+2)2≥0,∴(y+2)2+4≥4,∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4-x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?22.在△ABC中,AB=8,BC=6,∠B为锐角且cosB=.(1)求△ABC的面积.(2)求tanC.23.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则=,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则=;(3)如图3,若=k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)参考答案1.A【分析】根据最简二次根式的定义,逐一验证排除即可.【详解】A.是最简二次根式,故此选项正确;B.=,故此选项错误;C.=,故此选项错误;D.=,故此选项错误;故选:A.【点睛】本题考查了最简二次根式的定义,熟记最简二次根式的定义是解题的关键.2.C【分析】根据二次根式的加减乘除运算法则进行计算即可.【详解】A.,不能合并,故此选项错误;B.,故此选项错误;C.,故此选项正确;D.,故此选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算是解题的关键.3.B【分析】根据方程有实数根,分情况讨论:方程为关于的一次方程时,则=0计算可得;方程为关于的二次方程时,且计算即可得,综合二种情况即可.【详解】根据题意知,若方程是关于的一次方程时,可得=0,解得=1;若方程为二次方程时,且,解得且,综合二种情况可得,故选:B.【点睛】本题考查了方程的根的判定,分情况讨论的思想,掌握分情况讨论思想是解题的关键.4.D【解析】∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,,∴.由此可知:A、B、C三个选项中的结论正确,D选项中结论错误.故选D.5.A【分析】可设降价的百分率为,第一次降价后的价格为,第一次降价后的价格为,根据题意列方程求解即可.【详解】解:设降价的百分率为根据题意可列方程为解方程得,(舍)∴每次降价得百分率为故选A.【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.6.C【分析】根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果.【详解】∵S△BDF:S△DFC=1:4,
∴BF:FC=1:4,
∴BF:BC=1:5,
∵DF∥AC,
∴△BFD∽△BCA,
∴,
设S△BFD=k,则S△DFC=4k,S△ABC=25k,
∴S△ADC=20k,
∴S△BDF:S△DCA=1:20.
故选C.【点睛】本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.7.A【详解】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选A.点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.8.C【分析】由的余弦值得到它的度数,再分情况讨论,画出图象,利用锐角三角函数求出BC的长.【详解】解:∵,∴,如图,当是钝角三角形时,∵,,∴,∵,∴,∴,如图,当是锐角三角形时,.故选:C.【点睛】本题考查解直角三角形,解题的关键是掌握解直角三角形的方法,需要注意进行分类讨论.9.D【分析】延长,过点作,垂足为,由,即,设,则,然后可证明,然后相似三角形的对应边成比例可得:,进而可得,,从而可求.【详解】解:如图,延长,过点作,垂足为,,即,设,则,,,,,,,,.故选:.【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将放在直角三角形中.10.C【分析】直接利用相似三角形的性质得出对应角相等进而得出答案.【详解】解:∵△ABC∽△A1B1C1,∴∠A1=∠A=60°,∠B=∠B1=40°,则∠C1=180°﹣60°﹣40°=80°.故选:C.【点睛】此题主要考查了相似三角形的性质,正确得出对应角度数是解题关键.11.5【分析】根据题意,把化简整理得,代入所求代数式计算即可.【详解】由题意得,,代入所求代数式,可得原式=,故答案为:5.【点睛】本题考查了分式的化简求值,整体代换的思想,掌握整体代换的思想是解题的关键.12.12【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质.13.(22-x)(17-x)=300.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【详解】设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为(22﹣x)(17﹣x)=300.14.1或3【分析】分两种情形①当EM⊥AC时,△EMN∽△EAF.②当EN⊥AC时,△ENM∽△EAF,分别求解.【详解】解:①当EM⊥AC时,△EMN∽△EAF,∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,∴tan∠CAB=,∴∠CAB=30°,∴∠AEM=60°,∴∠AEF=30°,∴AF=AE•tan30°==1,②当EN⊥AC时,△ENM∽△EAF,由(1)可知,∠CAB=30°,EN⊥AC∴∠AEN=∠MEN=60°,∵,∴,∴,∴AF=3,故答案为:1或3.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(1)①,②;(2)①,;②,【分析】(1)①先把每个二次根式进行化简,化成最简二次根式,然后进行合并计算即可;②先把每个式子进行化简,利用最简二次根式,二次根式平方的性质,绝对值的性质,化简后进行计算即可;(2)①先去括号,把一元二次方程化简为一般形式,然后利用因式分解法解方程即可;②利用配方法直接求解一元二次方程即可.【详解】(1)①原式,,故答案为:;②原式,,故答案为:;(2)①把原方程化简为:,,,解得:或,故答案为:或;②原方程可化为:,,解得:或,故答案为:或.【点睛】本题考查了二次根式的化简计算,绝对值的性质,二次根式平方的性质,一元二次方程的解法,掌握计算的方法是解题的关键.16.化简结果是,求值结果是:.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【详解】解:原式====,∵x满足x2﹣4x+3=0,∴(x-3)(x-1)=0,∴x1=3,x2=1,当x=3时,原式=﹣=;当x=1时,分母等于0,原式无意义.∴分式的值为.故答案为:化简结果是,求值结果是:.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.17.(1)证明见详解.(2)的值为3或.【分析】(1)根据,即可证明方程有两个不相等的实数根(2)根据根与系数的关系,通过变形计算即可求出答案.【详解】解:(1)证明:∵==∴该方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得:,.∵,∴,即,化简,得,解得,,∴的值为3或.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.18.解:设购买了x件这种服装,根据题意得:,解得:x1=20,x2=30.当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去.答:她购买了30件这种服装.【详解】试题分析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.19.(1)见解析;(2)BG=BC+CG=10.【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.20.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得,,再由,得到,然后根据相似三角形的判定方法即可得到结论;(2)由得到,再证明出,利用,从而证明出即可得出结论.【详解】解:(1)四边形为平行四边形,,,,,,;(2),,而,①,,,,而,,而,②,由①②得,,.【点睛】本题考查了平行四边行的性质应用,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.21.(1);(2)5;(3)当x=5m时,花园的面积最大,最大面积是50m2.【详解】试题分析:(1)、将原式进行配方,然后根据非负数的性质得出最小值;(2)、将原式进行配方,然后根据非负数的性质得出最大值;(2)、根据题意得出代数式,然后进行配方得出最值.试题解析:(1)、m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)、4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)、由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.考点:一元二次方程的应用22.(1)12;(2)2.【分析】(1)如图,过点A作AH⊥BC于H.解直角三角形求出AH即可解决问题.(2)解直角三角形求出AH,CH即可解决问题.【详解】(1)如图,过点A作AH⊥BC于H.∵cosB=,∴∠B=60°,∴BH=AB•cosB=8=4,AH=,∴S△ABC=•BC•AH=×6×=;(2)在Rt△ACH中,∵∠AHC=90°,AH=,CH=BC﹣BH=7﹣4=2,∴tanC.【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(1)1,证明见解析;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学采购招标制度
- 浙江财经大学东方学院《数字电子技术A》2023-2024学年第一学期期末试卷
- 缺陷管理与企业社会责任实践
- 财务创新述职报告模板
- DB2201T 76-2024 非公路用旅游观光车辆安全管理规范
- 双十二广告策略
- 专业基础-2018-2019年房地产经纪人《专业基础》真题汇编
- 年终研发业务总结
- 教师继教个人培训学习计划
- 部编版语文四年级下册第五单元综合素质评价(含答案)
- 四年级数学(除数是两位数)计算题专项练习及答案
- 四川省绵阳市涪城区2024-2025学年九年级上学期1月期末历史试卷(含答案)
- 2025年山东水发集团限公司社会招聘高频重点提升(共500题)附带答案详解
- 2024年计算机二级WPS考试题库(共380题含答案)
- 《湖南省房屋建筑和市政工程消防质量控制技术标准》
- 中建集团面试自我介绍
- 《工业园区节水管理规范》
- 警校生职业生涯规划
- 意识障碍患者的护理诊断及措施
- 2025企业年会盛典
- 215kWh工商业液冷储能电池一体柜用户手册
评论
0/150
提交评论