【八年级上册数学浙教版】第18讲 一次函数考点分类总复习-【专题突破】(原卷版)_第1页
【八年级上册数学浙教版】第18讲 一次函数考点分类总复习-【专题突破】(原卷版)_第2页
【八年级上册数学浙教版】第18讲 一次函数考点分类总复习-【专题突破】(原卷版)_第3页
【八年级上册数学浙教版】第18讲 一次函数考点分类总复习-【专题突破】(原卷版)_第4页
【八年级上册数学浙教版】第18讲 一次函数考点分类总复习-【专题突破】(原卷版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页第18讲一次函数考点分类总复习考点一待定系数法求一次函数表达式【知识点睛】一次函数的定义:形如y=kx+b(k≠0)的函数叫做一次函数;正比例函数的定义:形如y=kx(k≠0)的一次函数叫做正比例函数;☆从定义可知:1.一次函数y=kxm+b需满足的条件有两点:①m=1;②k≠0;2.正比例函数是特殊的一次函数待定系数法求一次函数表达式的方法:步骤普通一次函数具体操作正比例函数具体操作1.“设”设所求一次函数解析式为y=kx+b(k≠0)设所求正比例函数解析式为y=kx(k≠0)2.“代入”把两对x、y的对应值分别代入y=kx+b,得到关于k、b的二元一次方程组把除(0,0)外的一对x、y的对应值代入y=kx,得到关于k一元一次方程3.“解”解这个关于k、b的二元一次方程组解这个关于k的一元一次方程4.“再代入”把求得的k、b的值代入到y=kx+b,得到所求的一次函数表达式把求得的k的值代入到y=kx,得到所求的正比例函数表达式一次函数y=kx+b的图象平移规律:首先明确一次函数的图象是一条直线,具体图象的性质见下一个考点总结;直线解析式的平移口诀:左加右减(x),上加下减(整体)【类题训练】下列y关于x的函数关系式:①y=x;②y=;③y=﹣1;④y=﹣x+10;⑤y=+1;⑥;⑦y=2x﹣1其中是一次函数的是,是正比例函数的是2.若函数y=(m﹣2)xn﹣1+n是一次函数,则m,n应满足的条件是()A.m≠2且n=2 B.m=2且n=2 C.m≠2且n=0 D.m=2且n=03.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是()A.k≠2 B.k=2 C.k=﹣ D.k=﹣24.定义[p,q]为一次函数y=px+q的特征数,若特征数为[t,t+3]的一次函数为正比例函数,则这个正比例函数为.5.一次函数y=kx+b,当﹣1≤x≤1时,对应的y的值为2≤y≤8,则kb的值为()A.15 B.﹣15 C.﹣10或12 D.15或﹣156.若y+1与x﹣2成正比例,当x=0时,y=1;则当x=1时,y的值是()A.﹣2 B.﹣1 C.0 D.17.若y与z成正比例,z+1与x成正比例,且当x=1时y=1,当x=0时,y=﹣3,则y与x的函数关系式为.8.将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣29.一次函数y=kx+b的图象经过点A(0,1),B(3,0),若将该图象沿着x轴向左平移2个单位,得到的直线表达式为.10.将直线y=2x﹣1向上平移4个单位,平移后所得直线的解析式为.11.函数y=﹣3x+1的图象,可以看作直线y=﹣3x向平移个单位长度而得到.12.将直线y=﹣2x+3平移后经过原点,则平移后的解析式为.13.已知经过点(0,2)的直线y=ax+b与直线y=x+1平行,则a=,b=.14.在平面直角坐标系xOy中,点P绕点T(t,0)逆时针旋转60°得到点Q,我们称点Q是点P的“正影射点”.若t=,则点P1(0,3)的“正影射点”Q1的坐标是.若点P在一次函数y=x﹣上,对于任意的t值,P的“正影射点”Q都在一条直线上,则这条直线的函数表达式为.考点二一次函数图象与性质【知识点睛】图象的画法:(原理:两点确定一条直线)步骤一次函数正比例函数找点找任意两个点,一般为“整点”或与坐标轴的交点找除原点外的任意一个点描点在平面直角坐标系中描出所找的点的位置连线过这两个点画一条直线过原点和这个点画一条直线图象的性质对于任意一次函数y=kx+b(k≠0),点A(x1,y1)B(x2,y2)在其图象上k>0k<0性质y随x的增大而增大y随x的增大而减小直线走势从左往右看上升从左往右看下降增减应用当x1<x2时,必有y1<y2(不等号开口方向相同)当x1<x2时,必有y1>y2(不等号开口方向相反)必过象限直线必过第一、三象限直线必过第二、四象限b>0直线过第一、二、三象限直线过第一、二、四象限b=0(正比例函数)直线过第一、三象限直线过第二、四象限正比例函数必过原点(0,0)b<0直线过第一、三、四象限直线过第二、三、四象限【类题训练】1.下列函数中:①y=-2x;②y=x-2;③y=x;④y=-2x+1;⑤y=x-4;(1)求出各函数经过的象限①;②;③;④;⑤;(2)y随x的值的增大而增大的函数有:(3)y随x的值的增大而减小的函数有:2.下列各点中在函数的图象上的是()A.(3,﹣2) B.(,3) C.(﹣4,1) D.(5,)3.关于一次函数y=3x﹣1的描述,下列说法正确的是()A.图象经过第一、二、三象限 B.函数的图象与x轴的交点坐标是(0,﹣1)C.向下平移1个单位,可得到y=3x D.图象经过点(1,2)4.若一次函数y=(k﹣3)x+8的图象经过第一、二、四象限,则k的取值范围是()A.k>0 B.k<0 C.k>3 D.k<35.如图,直线y=kx+b,与y轴交于点(0,3)与x轴交于点(a,0)当﹣2≤a<0时,k的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥3 D.k≥6.已知一次函数y=kx+b(k,b是常数,k≠0)若|k|<|b|,则它的图象可能是()A.B. C.D.7.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B. C.D.8.如果一次函数y=kx+b(k≠0)的图象经过第二象限,且与y轴的负半轴相交,那么()A.k>0,b<0 B.k>0,b>0 C.k<0,b>0 D.k<0,b<09.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1(k1≠0)与y2=k2x+b2(k2≠0)的图象分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0 B.k1+k2<0 C.b1﹣b2<0 D.b1•b2<010.一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)在同一平面直角坐标系中的图象可能是()A.B. C.D.11.一次函数y=(m﹣6)x+5中,y随x的增大而减小,则m的取值范围是.12.直线y=﹣2x+b上有三个点(,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1<y2<y3 C.y2>y1>y3 D.y2<y1<y313.在下列叙述中:①正比例函数y=2x的图象经过二、四象限;②一次函数y=2x﹣3中,y随x的增大而减小;③函数y=3x+1中,当x=﹣1时,函数值y=﹣2;④一次函数y=x+1的自变量x的取值范围是全体实数.正确的个数有()A.1个 B.2个 C.3个 D.4个14.无论m取任何实数,一次函数y=(m﹣1)x+m必过一定点,此定点坐标为15.已知点A(1,y1)和点B(a,y2)在一次函数y=﹣2x+b的图象上,且y1>y2,则a的值可能是()A.2 B.0 C.﹣1 D.﹣2考点三一次函数与方程(组)、不等式(组)的关系【知识点睛】一次函数y=kx+b作用具体应用与一元一次方程的关系求与x轴交点坐标方程kx+b=0的解是直线y=kx+b与x轴的交点横坐标与二元一次方程组的关系求两直线交点坐标方程组的解是直线与直线的交点坐标与一元一次不等式(组)的关系一元一次不等(如kx+b>0)的解可以由函数图象观察得出由函数图象直接写出不等式解集的方法归纳:①根据图象找出交点横坐标,②不等式中不等号开口朝向的一方,图象在上方,对应交点的左右,则x取其中一边的范围。【类题训练】1.一次函数y=﹣3x+6的图象与x轴的交点坐标是()A.(2,0) B.(6,0) C.(﹣3,0) D.(0,6)2.若直线y=4x+4与x轴交于点A,与y轴交于点B,则△AOB的面积是()A.2 B.4 C.11 D.53.若一次函数y=kx+b(k≠0)的图象经过(4,0)和(3,2)两点,则方程kx+b=4的解为()A.x=0 B.x=2 C.x=3 D.x=54.如图,直线y=x+5和直线y=ax+b相交于点P(20,25),根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=155.已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A.x=0 B.x=1 C.x=﹣2 D.x=36.若x=2是关于x的方程mx+n=0(m≠0,n>0)的解,则一次函数y=﹣m(x﹣1)﹣n的图象与x轴的交点坐标是()A.(2,0) B.(3,0) C.(0,2) D.(0,3)7.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b<0;③x=﹣2是方程3x+b=ax﹣2的解,其中正确的个数是()A.0 B.1 C.2 D.38.下表是一次函数y=kx+b(k≠0)的部分自变量和相应的函数值,方程kx+b=0的解x0所在的范围是()x﹣2﹣1012y﹣3﹣1135A.﹣2<x0<﹣1 B.﹣1<x0<0 C.0<x0<1 D.1<x0<29.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集为()A.x>2 B.x<2 C.x>﹣1 D.x<﹣110.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(2,c),则关于x的不等式组的解集为()A.x<5 B.1<x<5 C.﹣2<x<5 D.x<﹣211.一次函数y1=ax+b与y2=cx+d的图象如图所示,下列说法:①对于函数y1=ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第二象限;③不等式ax﹣d≥cx﹣b的解集是x≥4;④a﹣c=(d﹣b),其中正确的是()A.①②③ B.①③④ C.②③④ D.①②④12.一次函数y=3x﹣2与y=2x+b的图象的交点为P(2,4),则二元一次方程组的解和b的值分别是()A.,b=﹣6B.,b=0 C.,b=0D.,b=﹣613.一次函数y=ax+b与y=mx+n的图象在同一平面直角坐标系中的位置如图所示,一位同学根据图象写出以下信息:①ab<mn;②不等式mx+n≥ax+b的解集是x≤1;③方程组的解是.其中信息正确的有()A.3个 B.2个 C.1个 D.0个14.一般地,在平面直角坐标系中,任何一个二元一次方程对应的图象都是一条直线.已知如图过第一象限上A点的直线是方程x﹣y=b(b<﹣1)的图象,若点A的坐标恰为关于x,y的二元一次方程组的解,则a的值可能是()A.﹣1 B.0 C.1 D.215.直线y=mx+b与y=kx在同一平面直角坐标系中的图象如图所示,则方程组的解为,关于x的不等式mx+b<kx<0的解集为.16.如图,直线y1=kx+b与直线y2=﹣x+5交于点(1,m),则关于x的不等式组0<y2<y1的整数解有()A.2个 B.3个 C.4个 D.无数个17.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(﹣4,0);③m与n满足m=2n﹣2;④当x>﹣2时,(n+1)x<m﹣4n,其中正确的有(填所有正确的序号).18.如图,已知直线l1:y=kx+b与直线l2:y=−x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接PA、PC,以下说法错误的是()A.△ABD的面积为3 B.当PA+PC的值最小时,点P的坐标为(0,2) C.△BCD为直角三角形 D.方程组的解为19.已知一次函数y1=mx﹣2m+4(m≠0).(1)判断点(2,4)是否在该一次函数的图象上,并说明理由;(2)若一次函数y2=﹣x+6,当m>0,试比较函数值y1与y2的大小;(3)函数y1随x的增大而减小,且与y轴交于点A,若点A到坐标原点的距离小于6,点B,C的坐标分别为(0,﹣2),(2,1).求△ABC面积的取值范围.20.如图,过点B(1,0)的直线l1:y1=kx+b与直线l2:y2=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式.(2)不等式y1≥y2的解集为;(直接写出答案)(3)求四边形PAOC的面积.21.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过点A(﹣2,4),且与正比例函数的图象交于点B(a,2).(1)求a的值及△ABO的面积;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式的解集.考点四一次函数的实际应用【知识点睛】一次函数与行程问题方法总结:图象问题首先确定x轴、y轴的具体意义,其次找拐点;图象中的拐点一般指行程形式的改变,如从行进到停止、从停止再出发等;行程问题中,函数图象的表示式中的|k|通常等于速度;甲乙相距a㎞的问题中,甲在乙的前方a㎞,等价函数关系式为:y甲-y乙=a㎞;乙在甲的前方a㎞,等价函数关系式为:y乙-y甲=a㎞;另外,注意题目中是否有谁晚出发几小时,因为早出发的人离出发地a㎞,使两人相距a㎞;或者谁先到目的地后,因为另一个人离目的地a㎞,使两人相距a㎞;一次函数与几何图形结合问题要点提示:1.首先明确x轴、y轴的具体意义2.其次注意拐点的意义3.一次函数与谁结合,多注意所结合图形的特殊性质的应用。【类题训练】1.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.2.一条公路沿线有A,B,C三个站点,甲、乙两车分别从A,B站点同时出发,匀速驶达C站.设甲、乙两车行驶xh后,与B站的距离分别为y1km,y2km.y1,y2与x的函数关系如图,则两车相遇的时间是()A.20min B.30min C.60min D.80min3.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为.4.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发,沿折线B﹣A﹣D﹣C方向以a单位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论