版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题05一次函数及其运用复习考点攻略考点01一次函数相关概念正比例函数:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.2.一次函数:一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数。特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.3.一次函数的一般形式:一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.【例1】下列函数中,正比例函数是A.y=SKIPIF1<0 B.y=SKIPIF1<0C.y=SKIPIF1<0x D.y=SKIPIF1<0(x-1)【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=SKIPIF1<0;(4)y=x2,其中一次函数的个数是()A.1 B.2 C.3 D.4考点2一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-SKIPIF1<0,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b(k≠0)k>0,b>0一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b(k≠0)k<0,b>0一、二、四y随x的增大而减小k<0,b<0二、三、四(3)两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.【例3】已知正比例函数y=x的图象如图所示,则一次函数y=mx+n图象大致是A. B. C. D.【例4】已知一次函数SKIPIF1<0的图象经过点SKIPIF1<0,且SKIPIF1<0随SKIPIF1<0的增大而减小,则点SKIPIF1<0的坐标可以是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0考点3待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤:①设含有待定系数的函数解析式为y=kx(k≠0).②把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.③解方程,求出待定系数k.④将求得的待定系数k的值代入解析式.(3)待定系数法求一次函数解析式的一般步骤:①设出含有待定系数k、b的函数解析式y=kx+b.②把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.③解二元一次方程组,求出k,b.④将求得的k,b的值代入解析式.【例5】一次函数图象经过(3,1),(2,0)两点.(1)求这个一次函数的解析式;(2)求当x=6时,y的值.考点4一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.【例6】将函数y=2x的图象向上平移3个单位,则平移后的函数解析式是()A.y=2x+3 B.y=2x﹣3 C.y=2(x+3) D.y=2(x﹣3)考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.【例7】已知直线y=mx+n(m,n为常数)经过点(0,–2)和(3,0),则关于x的方程mx+n=0的解为A.x=0 B.x=1 C.x=–2 D.x=3【例8】如图为y=kx+b的图象,则kx+b=0的解为x=()A.2 B.–2 C.0 D.–1【例9】如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数的图象经过点B(−2,−1).(1)求一次函数的解析式;(2)请直接写出不等式组−1<kx+b<2x的解集.【例10】如图,函数y=kx+b与y=mx+n的图象交于点P(1,2),那么关于x,y的方程组的解是A. B. C. D.考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.【例11】在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等.(2)用一次函数解决实际问题的一般步骤为:①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式;③确定自变量的取值范围;④利用函数性质解决问题;⑤检验所求解是否符合实际意义;⑥答.(3)方案最值问题:对于求方案问题,通常涉及两个相关量,解题方法为根据题中所要满足的关系式,通过列不等式,求解出某一个事物的取值范围,再根据另一个事物所要满足的条件,即可确定出有多少种方案.(4)方法技巧求最值的本质为求最优方案,解法有两种:①可将所有求得的方案的值计算出来,再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解,由一次函数的增减性可直接确定最优方案及最值;若为分段函数,则应分类讨论,先计算出每个分段函数的取值,再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作,按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满,根据表中提供的信息,解答下列问题:物资种类食品药品生活用品每辆汽车运载量(吨)654每吨所需运费(元/吨)120160100(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应如何安排车辆?并求出最少总运费.第一部分选择题一、选择题(本题有10小题,每题4分,共40分)1.下列函数①y=﹣2x+1,②y=ax﹣b,③y=﹣SKIPIF1<0,④y=x2+2中,是一次函数的有A.①② B.① C.②③ D.①④2.一次函数y=–2x+b,b<0,则其大致图象正确的是A. B. C. D.3.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=–1的解为A.x=0 B.x=1 C.x=SKIPIF1<0 D.x=–2如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是A.x>﹣2 B.x>0 C.x>1 D.x<1如图,直线SKIPIF1<0经过点SKIPIF1<0,当SKIPIF1<0时,则SKIPIF1<0的取值范围为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A.B.C.D.7.若一次函数y=ax+b的图象经过一、二、四象限,则下列不等式中能成立的是()A.a>0 B.b<0 C.a+b>0 D.a﹣b<08.如图,直线y=kx+b交直线y=mx+n于点P(1,2),则关于x的不等式kx+b>mx+n的解集为()A.x>1 B.x>2 C.x<1 D.x<29.如图,一束光线从点SKIPIF1<0出发,经SKIPIF1<0轴上的点SKIPIF1<0反射后经过点SKIPIF1<0,则点SKIPIF1<0的坐标是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为A.SKIPIF1<0 B.2C.SKIPIF1<0 D.2SKIPIF1<0填空题填空题(本题有6小题,每题4分,共24分)11.已知函数y=(m+2)是正比例函数,则m的值是__________.12.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.13.如图,直线SKIPIF1<0与x轴、y轴分别交于A、B两点,把SKIPIF1<0绕点B逆时针旋转90°后得到SKIPIF1<0,则点SKIPIF1<0的坐标是_____.14.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为_____.15.直线经过,两点,则______(填“”“”或“”).16.如图,直线SKIPIF1<0的解析式为SKIPIF1<0与SKIPIF1<0轴交于点SKIPIF1<0,与SKIPIF1<0轴交于点SKIPIF1<0,以SKIPIF1<0为边作正方形SKIPIF1<0,点SKIPIF1<0坐标为SKIPIF1<0.过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,交SKIPIF1<0轴于点SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0轴的垂线交SKIPIF1<0于点SKIPIF1<0以SKIPIF1<0为边作正方形SKIPIF1<0,点SKIPIF1<0的坐标为SKIPIF1<0.过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0轴于点SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0轴的垂线交SKIPIF1<0于点SKIPIF1<0,以SKIPIF1<0为边作正方形SKIPIF1<0,SKIPIF1<0,则点SKIPIF1<0的坐标______.第三部分解答题三、解答题(本题有6小题,共56分)17.已知一次函数y=kx+b,当x=3时,y=14,当x=–1时,y=–6.(1)求k与b的值;(2)当y与x相等时,求x的值.18.已知y–3与3x+1成正比例,且x=2时,y=6.5.(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a的值.如图,直线l1的函数解析式为y=2x–2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B(3,1),如图所示.直线l1、l2交于点C(m,2).(1)求点D、点C的坐标;(2)求直线l2的函数解析式;(3)利用函数图象写出关于x、y的二元一次方程组的解.20.某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省深圳市福田区2024年中考数学二模考试试卷含答案
- 晋中信息学院《数字娱乐导论》2023-2024学年第一学期期末试卷
- 湖北汽车工业学院《艺术投融资》2023-2024学年第一学期期末试卷
- 鹤岗师范高等专科学校《软件项目案例分析》2023-2024学年第一学期期末试卷
- 重庆三峡医药高等专科学校《工控网络与通信》2023-2024学年第一学期期末试卷
- 重庆财经职业学院《美术欣赏与创作》2023-2024学年第一学期期末试卷
- 浙江宇翔职业技术学院《数字取证技术》2023-2024学年第一学期期末试卷
- 多金属选矿生产线和尾矿库项目可行性研究报告模板-备案拿地
- 空压机工作原理及结构图解析
- 中国地质大学(武汉)《企业经营沙盘实训》2023-2024学年第一学期期末试卷
- 八年级散文阅读专题训练-八年级语文上册知识梳理与能力训练
- 2024年杭州市中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024-2025学年人教版八年级数学上册期末测试模拟试题(含答案)
- 《环境感知技术》2024年课程标准(含课程思政设计)
- GB/T 45079-2024人工智能深度学习框架多硬件平台适配技术规范
- 2024年安徽省铜陵市公开招聘警务辅助人员(辅警)笔试自考练习卷二含答案
- 国家安全教育高教-第六章坚持以经济安全为基础
- 水处理药剂采购项目技术方案(技术方案)
- 2024年城市环卫一体化服务合同
- 工地春节安全培训
- 2024年代持房屋合作协议书模板
评论
0/150
提交评论