江苏省江阴市暨阳中学2025届高考适应性考试数学试卷含解析_第1页
江苏省江阴市暨阳中学2025届高考适应性考试数学试卷含解析_第2页
江苏省江阴市暨阳中学2025届高考适应性考试数学试卷含解析_第3页
江苏省江阴市暨阳中学2025届高考适应性考试数学试卷含解析_第4页
江苏省江阴市暨阳中学2025届高考适应性考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省江阴市暨阳中学2025届高考适应性考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列为等比数列,若,且,则()A. B.或 C. D.2.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像3.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.4.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.45.已知等比数列满足,,等差数列中,为数列的前项和,则()A.36 B.72 C. D.6.函数的图像大致为()A. B.C. D.7.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.8.已知等差数列的前项和为,,,则()A.25 B.32 C.35 D.409.在三棱锥中,,,,,点到底面的距离为2,则三棱锥外接球的表面积为()A. B. C. D.10.台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,则该正方形的边长为()A.50cm B.40cm C.50cm D.20cm11.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A.85 B.84 C.57 D.5612.函数y=sin2x的图象可能是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是一个算法的伪代码,运行后输出的值为___________.14.在边长为2的正三角形中,,则的取值范围为______.15.某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有________种.16.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数.(1)若函数在上为减函数,求实数的取值范围;(2)求证:对上的任意两个实数,,总有成立.18.(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.19.(12分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)写出直线的普通方程与曲线的直角坐标方程;(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.20.(12分)已知函数,函数在点处的切线斜率为0.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点,,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.21.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.22.(10分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.2、B【解析】

化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.3、C【解析】

由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.4、D【解析】

根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.5、A【解析】

根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【详解】等比数列满足,,所以,又,所以,由等差数列的性质可得.故选:A【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.6、A【解析】

根据排除,,利用极限思想进行排除即可.【详解】解:函数的定义域为,恒成立,排除,,当时,,当,,排除,故选:.【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.7、D【解析】

画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.8、C【解析】

设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.【详解】设等差数列的首项为,公差为,则,解得,∴,即有.故选:C.【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.9、C【解析】

首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积.【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,,,,,,为的中点由球的性质可知:平面,,且.设,,,,在中,,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为.故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.10、D【解析】

过点做正方形边的垂线,如图,设,利用直线三角形中的边角关系,将用表示出来,根据,列方程求出,进而可得正方形的边长.【详解】过点做正方形边的垂线,如图,设,则,,则,因为,则,整理化简得,又,得,.即该正方形的边长为.故选:D.【点睛】本题考查直角三角形中的边角关系,关键是要构造直角三角形,是中档题.11、A【解析】

先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.12、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.二、填空题:本题共4小题,每小题5分,共20分。13、13【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.14、【解析】

建立直角坐标系,依题意可求得,而,,,故可得,且,由此构造函数,,利用二次函数的性质即可求得取值范围.【详解】建立如图所示的平面直角坐标系,则,,,设,,,,根据,即,,,则,,即,,,则,,所以,,,,,,且,故,设,,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为.故答案为:.【点睛】本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题.15、156【解析】

先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过“正难则反”的思想进行分析.16、【解析】

由题意容积,求导研究单调性,分析即得解.【详解】由题意:容积,,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【点睛】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)求出函数的导函数,依题意可得在上恒成立,参变分离得在上恒成立.设,求出即可得到参数的取值范围;(2)不妨设,,,利用导数说明函数在上是减函数,即可得证;【详解】解:(1)∵∴,且函数在上为减函数,即在上恒成立,∴在上恒成立.设,∵函数在上单调递增,∴,∴,∴实数的取值范围为.(2)不妨设,,,则,∴.∵,∴,又,令,∴,∴在上为减函数,∴,∴,即,∴在上是减函数,∴,即,∴,∴当时,.∵,∴.【点睛】本题考查了利用导数研究函数的单调性、极值与最值,利用导数证明不等式,考查了推理能力与计算能力,属于难题.18、(1)见解析;(2)见解析【解析】

(1)求导得,分类讨论和,利用导数研究含参数的函数单调性;(2)根据(1)中求得的的单调性,得出在处取得最大值为,构造函数,利用导数,推出,即可证明不等式.【详解】解:(1)由于,得,当时,,此时在上递增;当时,由,解得,若,则,若,,此时在递增,在上递减.(2)由(1)知在处取得最大值为:,设,则,令,则,则在单调递减,∴,即,则在单调递减∴,∴,∴.【点睛】本题考查利用导数研究函数的单调性和最值,涉及分类讨论和构造新函数,通过导数证明不等式,考查转化思想和计算能力.19、(1)的普通方程为.的直角坐标方程为(2)(-1,0)或(2,3)【解析】

(1)对直线的参数方程消参数即可求得直线的普通方程,对整理并两边乘以,结合,即可求得曲线的直角坐标方程。(2)由(1)得:曲线C是以Q(1,1)为圆心,为半径的圆,设点P的坐标为,由题可得:,利用两点距离公式列方程即可求解。【详解】解:(1)由消去参数,得.即直线的普通方程为.因为又,∴曲线的直角坐标方程为(2)由知,曲线C是以Q(1,1)为圆心,为半径的圆设点P的坐标为,则点P到上的点的最短距离为|PQ|即,整理得,解得所以点P的坐标为(-1,0)或(2,3)【点睛】本题主要考查了参数方程化为普通方程及极坐标方程化为直角坐标方程,还考查了转化思想及两点距离公式,考查了方程思想及计算能力,属于中档题。20、(1),单调性见解析;(2)不存在,理由见解析【解析】

(1)由题意得,即可得;求出函数的导数,再根据、、、分类讨论,分别求出、的解集即可得解;(2)假设满足条件的、存在,不妨设,且,由题意得可得,令(),构造函数(),求导后证明即可得解.【详解】(1)由题可得函数的定义域为且,由,整理得..(ⅰ)当时,易知,,时.故在上单调递增,在上单调递减.(ⅱ)当时,令,解得或,则①当,即时,在上恒成立,则在上递增.②当,即时,当时,;当时,.所以在上单调递增,单调递减,单调递增.③当,即时,当时,;当时,.所以在上单调递增,单调递减,单调递增.综上,当时,在上单调递增,在单调递减.当时,在及上单调递增;在上单调递减.当时,在上递增.当时,在及上单调递增;在上递减.(2)满足条件的、不存在,理由如下:假设满足条件的、存在,不妨设,且,则,又,由题可知,整理可得:,令(),构造函数().则,所以在上单调递增,从而,所以方程无解,即无解.综上,满足条件的A、B不存在.【点睛】本题考查了导数的应用,考查了计算能力和转化化归思想,属于中档题.21、(Ⅰ)(Ⅱ)见证明【解析】

(Ⅰ)求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;(Ⅱ)由是减函数,且可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论