沪科版九年级上册数学期末考试试卷含答案_第1页
沪科版九年级上册数学期末考试试卷含答案_第2页
沪科版九年级上册数学期末考试试卷含答案_第3页
沪科版九年级上册数学期末考试试卷含答案_第4页
沪科版九年级上册数学期末考试试卷含答案_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版九年级上册数学期末考试试题一、选择题。(每小题只有一个正确答案)1.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.2.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为()A. B. C. D.3.如图,在中,,,折叠使得点落在边上的点处,折痕为.连接、,下列结论:①△是等腰直角三角形;②;③;④.其中正确的个数是()A.1 B.2 C.3 D.44.抛物线的对称轴是()A. B. C. D.5.若点、、都在反比例函数的图象上,并且,则下列各式中正确的是()A. B. C. D.6.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm7.如图,已知正方形ABCD,将对角线BD绕着点B逆时针旋转,使点D落在CB的延长线上的D′点处,那么sin∠AD′B的值是()A. B. C. D.8.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m远,该同学的身高为1.7m,则树高为().A.3.4m B.4.7m C.5.1m D.6.8m9.二次函数的图象如图所示,其对称轴为,有下列结论:①;②;③;④对任意的实数,都有,其中正确的是A.①② B.①④ C.②③ D.②④10.若函数其几对对应值如下表,则方程(,,为常数)根的个数为()A.0 B.1 C.2 D.1或2二、填空题11.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.12.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是_____.13.如图,已知点A,C在反比例函数的图象上,点B,D在反比例函的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a−b的值是_______.14.计算:______.15.如图,在Rt△ABC,∠C=90°,sinB=,AB=15,则AC的值是_____.三、解答题16.计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.17.如图,已知是原点,两点的坐标分别为,.(1)以点为位似中心,在轴的左侧将扩大为原来的两倍(即新图与原图的相似比为),画出图形,并写出点的对应点的坐标;(2)如果内部一点的坐标为,写出点的对应点的坐标.18.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.19.如图,在某建筑物上,挂着“缘分天注定,悠然在潜山”的宣传条幅,小明站在点处,看条幅顶端,测得仰角为,再往条幅方向前行30米到达点处,看到条幅顶端,测得仰角为,求宣传条幅的长.(注:不计小明的身高,结果精确到1米,参考数据,)20.如图,,分别是,上的点,,于,于.若,,求:(1);(2)与的面积比.21.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?22.如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.23.如图,在直角坐标系中,以点为圆心,以3为半径的圆,分别交轴正半轴于点,交轴正半轴于点,过点的直线交轴负半轴于点.(1)求两点的坐标;(2)求证:直线是⊙的切线.24.如图,抛物线与直线相交于,两点,且抛物线经过点(1)求抛物线的解析式.(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.参考答案1.C【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.2.A【分析】先根据角平分线的定义、圆周角定理可得,再根据相似三角形的判定定理得出,然后根据相似三角形的性质即可得.【详解】平分弧BD与弧CD相等又,即解得故选:A.【点睛】本题考查了角平分线的定义、圆周角定理、相似三角形的判定定理与性质,利用圆周角定理找到两个相似三角形是解题关键.3.C【分析】根据折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质、三角形的面积公式逐个判断即可得.【详解】由折叠的性质得:又在中,即,则是等腰直角三角形,结论①正确由结论①可得:,则结论②正确,则结论③正确如图,过点E作由结论①可得:是等腰直角三角形,由勾股定理得:,则结论④错误综上,正确的结论有①②③这3个故选:C.【点睛】本题考查了折叠的性质、等腰直角三角形的定义、相似三角形的判定定理与性质等知识点,熟记并灵活运用各定理与性质是解题关键.4.D【解析】【分析】根据二次函数的对称轴公式计算即可,其中a为二次项系数,b为一次项系数.【详解】由二次函数的对称轴公式得:故选:D.【点睛】本题考查了二次函数的对称轴公式,熟记公式是解题关键.5.B【分析】根据反比例函数的图象特征即可得.【详解】反比例函数的图象特征:(1)当时,y的取值为正值;当时,y的取值为负值;(2)在每个象限内,y随x的增大而增大由特征(1)得:,则最大由特征(2)得:综上,故选:B.【点睛】本题考查了反比例函数的图象特征,掌握理解反比例函数的图象特征是解题关键.6.C【分析】根据比例关系即可求解.【详解】∵模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60,∴=0.60,解得:x=99,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:=0.618,解得:y≈8.故选:C.【点睛】此题主要考查比例的性质,解题的关键是熟知比例关系的定义.7.A【分析】设,根据正方形的性质可得,再根据旋转的性质可得的长,然后由勾股定理可得的长,从而根据正弦的定义即可得.【详解】设由正方形的性质得由旋转的性质得在中,则故选:A.【点睛】本题考查了正方形的性质、旋转的性质、正弦的定义等知识点,根据旋转的性质得出的长是解题关键.8.C【分析】由入射光线和反射光线与镜面的夹角相等,可得两个相似三角形,根据相似三角形的性质解答即可.【详解】解:由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,

故△ABC∽△AED,由相似三角形的性质,设树高x米,

则,

∴x=5.1m.

故选:C.【点睛】本题考查相似三角形的应用,关键是由入射光线和反射光线与镜面的夹角相等,得出两个相似三角形.9.B【分析】根据二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系逐个判断即可.【详解】抛物线的开口向下对称轴为,异号,则抛物线与y轴的交点在y轴的上方,则①正确由图象可知,时,,即则,②错误由对称性可知,和的函数值相等则时,,即,③错误可化为关于m的一元二次方程的根的判别式则二次函数的图象特征:抛物线的开口向下,与x轴只有一个交点因此,,即,从而④正确综上,正确的是①④故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系,熟练掌握函数的图象与性质是解题关键.10.C【分析】先根据表格得出二次函数的图象与x轴的交点个数,再根据二次函数与一元二次方程的关系即可得出答案.【详解】由表格可得,二次函数的图象与x轴有2个交点则其对应的一元二次方程根的个数为2故选:C.【点睛】本题考查了二次函数的图象、二次函数与一元二次方程的关系,掌握理解二次函数的图象特点是解题关键.11.3【分析】求得直线与抛物线的交点坐标,从而求得截得的线段的长即可.【详解】解:令y=2得:x2﹣3x+2=2,解得:x=0或x=3,所以交点坐标为(0,2)和(3,2),所以截得的线段长为3﹣0=3,故答案为:3.【点睛】本题考查了二次函数的性质,解题的关键是求得直线与抛物线的交点,难度不大.12.20【分析】连接OA、OB,如图,根据圆周角定理得到∠AOB=2∠ACB=90°,则OA=AB=20,再根据三角形中位线性质得到MN=AC,然后利用AC为直径时,AC的值最大可确定MN的最大值.【详解】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×20=20,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为20,故答案为20.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形中位线性质.13.【分析】利用反比例函数k的几何意义得出a-b=4•OE,a-b=5•OF,求出=6,即可求出答案.【详解】如图,∵由题意知:a-b=4•OE,a-b=5•OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征,能求出方程=6是解此题的关键.14.【分析】将锐角三角函数值代入求值即可.【详解】解:===故填:【点睛】本题考查锐角三角函数值的混合运算,熟记特殊角三角函数值正确计算是本题的解题关键.15.12【分析】由sinB=得AC=ABsinB,据此可得.【详解】解:在Rt△ABC中,∵sinB=,∴AC=ABsinB=15×=12,故答案为:12.【点睛】此题主要考查三角函数的应用,解题的关键是熟知正弦函数的定义.16.2【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=﹣1+2﹣+1=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.17.(1)如图,即为所求,见解析;点的对应点的坐标为,点的对应点的坐标为;(2)点的对应点的坐标为.【分析】(1)延长BO,CO到B′、C′,使OB′、OC′的长度是OB、OC的2倍.顺次连接三点即可;

(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【详解】(1)如图,即为所求,点的对应点的坐标为,点的对应点的坐标为.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【点睛】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.18.(1)y=-,y=-2x-4(2)8【分析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.【详解】(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×2+×2×6,=2+6,=8.考点:反比例函数与一次函数的交点问题.19.宣传条幅BC的长约为26米.【分析】先根据三角形的外角性质得出,再根据等腰三角形的判定可得BE的长,然后利用的正弦值求解即可.【详解】由题意得米(米)在中,,即(米)答:宣传条幅BC的长约为26米.【点睛】本题考查了等腰三角形的判定、解直角三角形等知识点,熟记正弦值的定义及特殊角的正弦值是解题关键.20.(1);(2)【分析】(1)先根据相似三角形的判定定理得出,再根据相似三角形的性质即可得出答案;(2)根据相似三角形的面积之比等于其相似比的平方即可得.【详解】(1);(2)由(1)已证.【点睛】本题考查了相似三角形的判定定理与性质,属于基础题,熟记定理与性质是解题关键.21.(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【分析】(1)根据销售额=销售量×销售价单x,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.【详解】解:(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150,解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.22.(1)详见解析;(2)9.【分析】(1)先根据正方形的性质、直角三角形的性质得出,再加上一组直角相等,根据相似三角形的判定定理即可得证;(2)先根据正方形的性质、中点的性质求出AE的长,再根据勾股定理求出BE的长,最后根据相似三角形的性质、线段的和差即可得.【详解】(1)∵四边形ABCD为正方形,且;(2)∵四边形ABCD为正方形,点E为AD的中点在中,由(1)知,,即故的长为9.【点睛】本题考查了正方形的性质、勾股定理、相似三角形的判定定理与性质等知识点,较难的是题(2),由题(1)的结论联系到利用相似三角形的性质是解题关键.23.(1),;(2)详见解析.【分析】(1)先根据圆的半径可求出CA的长,再结合点C坐标即可得出点A坐标;根据点C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论