山西省太原市六十六中2025届高三适应性调研考试数学试题含解析_第1页
山西省太原市六十六中2025届高三适应性调研考试数学试题含解析_第2页
山西省太原市六十六中2025届高三适应性调研考试数学试题含解析_第3页
山西省太原市六十六中2025届高三适应性调研考试数学试题含解析_第4页
山西省太原市六十六中2025届高三适应性调研考试数学试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市六十六中2025届高三适应性调研考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A. B. C. D.2.函数图象的大致形状是()A. B.C. D.3.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3 B. C.6 D.4.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.5.已知数列为等差数列,为其前项和,,则()A. B. C. D.6.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().A. B. C. D.57.点在曲线上,过作轴垂线,设与曲线交于点,,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为()A.0 B.1 C.2 D.38.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.9.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A. B. C.l D.111.的展开式中的系数是()A.160 B.240 C.280 D.32012.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是__.14.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.15.某大学、、、四个不同的专业人数占本校总人数的比例依次为、、、,现欲采用分层抽样的方法从这四个专业的总人数中抽取人调查毕业后的就业情况,则专业应抽取_________人.16.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.18.(12分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.19.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.20.(12分)已知等比数列是递增数列,且.(1)求数列的通项公式;(2)若,求数列的前项和.21.(12分)如图,三棱锥中,点,分别为,的中点,且平面平面.求证:平面;若,,求证:平面平面.22.(10分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:.【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.2、B【解析】

判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,,可排除D;故选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题.3、A【解析】

根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.4、D【解析】

根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.5、B【解析】

利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.6、C【解析】试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1所以|a+bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模7、C【解析】

设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,,则单调递减;当时,,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.8、C【解析】

根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.【点睛】本题考查程序框图,是基础题.9、A【解析】

将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.10、A【解析】

设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.11、C【解析】

首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.12、C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

由题,得,然后根据纯虚数的定义,即可得到本题答案.【详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【点睛】本题主要考查纯虚数定义的应用,属基础题.14、【解析】

由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.【点睛】该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.15、【解析】

求出专业人数在、、、四个专业总人数的比例后可得.【详解】由题意、、、四个不同的专业人数的比例为,故专业应抽取的人数为.故答案为:1.【点睛】本题考查分层抽样,根据分层抽样的定义,在各层抽取样本数量是按比例抽取的.16、【解析】

由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得.【详解】如图,连接,,,∵分别为棱的中点,∴,又正方体中,即是平行四边形,∴,∴,(或其补角)就是直线与直线所成角,是等边三角形,∴=60°,其正切值为.故答案为:.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)4【解析】

(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【详解】(1)当时不等式可化为当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,,,,即而当且仅当:,即,即时等号成立∴,综上实数最大值为4.【点睛】本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18、(1)79颗;(2)5.5秒.【解析】

(1)利用各小矩形的面积和为1可得,进而得到脉冲星自转周期在2至10秒的频率,从而得到频数;(2)平均值的估计值为各小矩形组中值与频率的乘积的和得到.【详解】(1)第一到第六组的频率依次为0.1,0.2,0.3,0.2,,0.05,其和为1所以,,所以,自转周期在2至10秒的大约有(颗).(2)新发现的脉冲星自转周期平均值为(秒).故新发现的脉冲星自转周期平均值为5.5秒.【点睛】本题考查频率分布直方图的应用,涉及到平均数的估计值等知识,是一道容易题.19、(1)(2)定值为0.【解析】

(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率为,所以,(2),设直线,则因此由得,所以,因此即【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.20、(1)(2)【解析】

(1)先利用等比数列的性质,可分别求出的值,从而可求出数列的通项公式;(2)利用错位相减求和法可求出数列的前项和.【详解】解:(1)由是递增等比数列,,联立,解得或,因为数列是递增数列,所以只有符合题意,则,结合可得,∴数列的通项公式:;(2)由,∴;∴;那么,①则,②将②﹣①得:.【点睛】本题考查了等比数列的性质,考查了等比数列的通项公式,考查了利用错位相减法求数列的前项和.21、证明见解析;证明见解析.【解析】

利用线面平行的判定定理求证即可;为中点,为中点,可得,,,可知,故为直角三角形,,利用面面垂直的判定定理求证即可.【详解】解:证明:为中点,为中点,,又平面,平面,平面;证明:为中点,为中点,,又,,则,故为直角三角形,,平面平面,平面平面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论