人教八年级数学上册全等三角形《角平分线的性质》公开教学课件_第1页
人教八年级数学上册全等三角形《角平分线的性质》公开教学课件_第2页
人教八年级数学上册全等三角形《角平分线的性质》公开教学课件_第3页
人教八年级数学上册全等三角形《角平分线的性质》公开教学课件_第4页
人教八年级数学上册全等三角形《角平分线的性质》公开教学课件_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12.3角平分线的性质(1)

人教版数学八年级上册第十二章

全等三角形教学目标1.学会角平分线的画法.2.探究并认知角平分线的性质.3.熟练地运用角平分线的性质解决实际问题.新知导入在纸上画一个角,你能得到这个角的平分线吗?

用量角器度量,也可用折纸的方法.

如果把前面的纸片换成木板、钢板等,还能用对折的方法得到木板、钢板的角平分线吗?问题1:问题2:新知讲解如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?ABC(E)D其依据是SSS,两全等三角形的对应角相等.问题3:【思考】如果没有此仪器,我们用尺规作图,能实现该仪器的功能吗?新知讲解ABMNCO已知:∠AOB.求作:∠AOB的平分线.仔细观察步骤:

作角平分线是最基本的尺规作图,大家一定要掌握噢!作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.半径小于MN或等于MN,可以吗?新知讲解如图,任意作一个角∠AOB,作出∠AOB的平分线OC,在OC

上任取一点P,过点P

画出OA,OB

的垂线,分别记垂足为D,E,测量PD,PE

并作比较,你得到什么结论?探究在OC

上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?观察测量结果,猜想线段PD与PE的大小关系,写出结论:____________.

PD

PE

第一次第二次第三次

PD=PE新知讲解已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.PAOBCDE证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS).∴PD=PE.角的平分线上的点到角的两边的距离相等.验证猜想新知讲解归纳总结∵OC是∠AOB的平分线,

PD⊥OA,PE⊥OB,∴PD=PE.几何语言:角平分线的性质:角的平分线上的点到角的两边的距离相等.新知讲解

由角的平分线的性质的证明过程,你能概括出证明几何命题的一般步骤吗?(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用符号表示已知和求证;(3)经过分析,找出由已知推出求证的途径,写出证明过程.角的平分线的性质的作用是什么?主要是用于判断和证明两条线段是否相等,与以前的方法相比,运用此性质不需要先证两个三角形全等.巩固练习ABOPCDE练习1

下列结论一定成立的是

.(1)如图,OC平分∠AOB,点P在OC上,D,E分别为OA,OB上的点,则PD=PE.ABOPCDE(2)如图,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E,则PD=PE.(3)(3)如图,OC平分∠AOB,点P在OC上,PD⊥OA,垂足为D.若PD=3,则点P到OB的距离为3.ABOPCD巩固练习练习2

如图,在△ABC中,∠B,∠C的平分线交于点O,OD⊥AB于点D,OE⊥AC于点E,则OD与OE的大小关系是(

)A.OD>OEB.OD=OEC.OD<OED.不能确定B例题讲解例1已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC.垂足分别为E,F.求证:EB=FC.ABCDEF证明:∵AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴

DE=DF,

∠DEB=∠DFC=90°.在Rt△BDE和

Rt△CDF中,DE=DF,BD=CD,∴Rt△BDE≌Rt△CDF(HL).∴EB=FC.例题讲解EDCBA6810例2

在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,则:(1)哪条线段与DE相等?为什么?(2)若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长.解:(1)DC=DE.理由如下:角平分线上的点到角两边的距离相等.(2)在Rt△CDB和Rt△EDB中,DC=DE,DB=DB,∴Rt△CDB≌Rt△EDB(HL),∴BE=BC=8.∴

AE=AB–BE=2.∴△AED的周长=AE+ED+DA=2+6=8.CD课堂总结利用角平分线的性质所得到的等量关系进行转化求解1.应用角平分线性质:存在角平分线涉及距离问题2.联系角平分线性质:面积周长条件课堂小结角平分线尺规作图属于基本作图,必须熟练掌握性质定理一个点:角平分线上的点;二距离:点到角两边的距离;两相等:两条垂线段相等辅助线添加过角平分线上一点向两边作垂线段为证明线段相等提供了又一途径当堂检测1.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,则下列四个结论:①AD

上任意一点到点C、点B的距离相等;②AD上任意一点到AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中,正确的个数是()A.1个 B.2个C.3个D.4个D当堂检测2.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.当堂检测3.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°B

N当堂检测4.如图所示,D是∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.

求证:CE=CF.证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF.在Rt△CDE和Rt△CDF中,∴Rt△CDE≌Rt△CDF(HL),∴CE=CF.当堂检测5.如图,已知AD∥BC,P是∠BAD与∠ABC的平分线的交点,PE⊥AB于E,且PE=3,求AD与BC之间的距离.解:过点P作MN⊥AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论