![2024届上海市静安区丰华中学高考模拟调研卷数学试题(一)_第1页](http://file4.renrendoc.com/view11/M02/1F/2A/wKhkGWd5FZuACzFOAAGbXtrQZtc289.jpg)
![2024届上海市静安区丰华中学高考模拟调研卷数学试题(一)_第2页](http://file4.renrendoc.com/view11/M02/1F/2A/wKhkGWd5FZuACzFOAAGbXtrQZtc2892.jpg)
![2024届上海市静安区丰华中学高考模拟调研卷数学试题(一)_第3页](http://file4.renrendoc.com/view11/M02/1F/2A/wKhkGWd5FZuACzFOAAGbXtrQZtc2893.jpg)
![2024届上海市静安区丰华中学高考模拟调研卷数学试题(一)_第4页](http://file4.renrendoc.com/view11/M02/1F/2A/wKhkGWd5FZuACzFOAAGbXtrQZtc2894.jpg)
![2024届上海市静安区丰华中学高考模拟调研卷数学试题(一)_第5页](http://file4.renrendoc.com/view11/M02/1F/2A/wKhkGWd5FZuACzFOAAGbXtrQZtc2895.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届上海市静安区丰华中学高考模拟调研卷数学试题(一)注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,若,则()A. B. C. D.2.若函数的图象如图所示,则的解析式可能是()A. B. C. D.3.已知向量,,且与的夹角为,则x=()A.-2 B.2 C.1 D.-14.正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为()A. B. C. D.5.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.16.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.7.命题“”的否定为()A. B.C. D.8.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交9.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.710.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路C.丙走桃花峪登山线路 D.甲走天烛峰登山线路12.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_______.14.若方程有两个不等实根,则实数的取值范围是_____________.15.(x+y)(2x-y)5的展开式中x3y3的系数为________.16.已知数列的前项满足,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,直角梯形中,,,,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.19.(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.20.(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.21.(12分)已知数列满足:,,且对任意的都有,(Ⅰ)证明:对任意,都有;(Ⅱ)证明:对任意,都有;(Ⅲ)证明:.22.(10分)椭圆:的左、右焦点分别是,,离心率为,左、右顶点分别为,.过且垂直于轴的直线被椭圆截得的线段长为1.(1)求椭圆的标准方程;(2)经过点的直线与椭圆相交于不同的两点、(不与点、重合),直线与直线相交于点,求证:、、三点共线.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由,得,代入集合B即可得.【详解】,,,即:,故选:A【点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.2.A【解析】
由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B,为奇函数可判断B错误;对于选项C,当时,,可判断C错误;对于选项D,,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.3.B【解析】
由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.4.C【解析】
分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,,,则,,由,即,得.所以=,所以当时,的最小值为.故选:C.【点睛】本题考查向量的数量积的坐标表示,属于基础题.5.B【解析】
,选B.6.B【解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.7.C【解析】
套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.8.D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.9.B【解析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.10.D【解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.11.D【解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路,丙走红门盘道徒步线路故选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.12.C【解析】
模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据三角形三边关系可知对任意的恒成立,将的解析式用分离常数法变形,由均值不等式可得分母的取值范围,则整个式子的取值范围由的符号决定,故分为三类讨论,根据函数的单调性求出函数值域,再讨论,转化为的最小值与的最大值的不等式,进而求出的取值范围.【详解】因为对任意正实数,都存在以为三边长的三角形,故对任意的恒成立,,令,则,当,即时,该函数在上单调递减,则;当,即时,,当,即时,该函数在上单调递增,则,所以,当时,因为,,所以,解得;当时,,满足条件;当时,,且,所以,解得,综上,,故答案为:【点睛】本题考查参数范围,考查三角形的构成条件,考查利用函数单调性求函数值域,考查分类讨论思想与转化思想.14.【解析】
由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.15.40【解析】
先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.16.【解析】
由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法.【详解】∵①,∴时,②,①-②得,∴,又,∴().故答案为:.【点睛】本题考查求数列通项公式,由已知条件.类比已知求的解题方法求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)存在,长【解析】
(1)先证面,又因为面,所以平面平面.(2)根据题意建立空间直角坐标系.列出各点的坐标表示,设,则可得出向量,求出平面的法向量为,利用直线与平面所成角的正弦公式列方程求出或,从而求出线段的长.【详解】解:(1)证明:因为四边形为矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系.如图所示:则,,,,,设,;∴,,设平面的法向量为,∴,不防设.∴,化简得,解得或;当时,,∴;当时,,∴;综上存在这样的点,线段的长.【点睛】本题考查平面与平面垂直的判定定理的应用,考查利用线面所成角求参数问题,是几何综合题,考查空间想象力以及计算能力.18.(1):,:;(2),此时.【解析】试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标为到的距离当且仅当时,取得最小值,最小值为,此时的直角坐标为.试题解析:(1)的普通方程为,的直角坐标方程为.(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,.当且仅当时,取得最小值,最小值为,此时的直角坐标为.考点:坐标系与参数方程.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.19.(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上线人数除以总人数求解;(2)(i)利用二项分布求解;(ii)甲、乙两市上线人数分别记为X,Y,得,.,利用期望公式列不等式求解【详解】(1)估计本科上线率为.(2)(i)记“恰有8名学生达到本科线”为事件A,由图可知,甲市每个考生本科上线的概率为0.6,则.(ii)甲、乙两市2020届高考本科上线人数分别记为X,Y,依题意,可得,.因为2020届高考本科上线人数乙市的均值不低于甲市,所以,即,解得,又,故p的取值范围为.【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.20.(1);(2)或.【解析】
(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.【详解】(1)因为,所以当时,;当时,无解;当时,;综上,不等式的解集为;(2),又,或.【点睛】本题考查分段函数,绝对值不等式的解法,以及关于函数的存在和任意的问题,属于中档题.21.(1)见解析(2)见解析(3)见解析【解析】分析:(1)用反证法证明,注意应用题中所给的条件,有效利用,再者就是注意应用反证法证题的步骤;(2)将式子进行相应的代换,结合不等式的性质证得结果;(3)结合题中的条件,应用反证法求得结果.详解:证明:(Ⅰ)证明:采用反证法,若不成立,则若,则,与任意的都有矛盾;若,则有,则与任意的都有矛盾;故对任意,都有成立;(Ⅱ)由得,则,由(Ⅰ)知,,即对任意,都有;.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国饲料中间体化学品行业头部企业市场占有率及排名调研报告
- 2025-2030全球高速标签打印机行业调研及趋势分析报告
- 2025年全球及中国汽车座椅加热通风线束行业头部企业市场占有率及排名调研报告
- 2025-2030全球条形码库存管理系统行业调研及趋势分析报告
- 2025-2030全球生物基电池行业调研及趋势分析报告
- 2025年全球及中国农场畜牧管理软件行业头部企业市场占有率及排名调研报告
- 2025-2030全球印刷级热敏纸行业调研及趋势分析报告
- 担保函保证合同
- 2025监控售后维修合同
- 房屋买卖合同范文
- 如何提高售后服务的快速响应能力
- 危化品运输安全紧急救援与处理
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
- 高数(大一上)期末试题及答案
- 北方春节的十大风俗
- 婚介公司红娘管理制度
- 煤矿电气试验规程
- JCT796-2013 回弹仪评定烧结普通砖强度等级的方法
- 物业客服培训课件PPT模板
- 火力发电厂节能管理制度实施细则
- 华为携手深圳国际会展中心创建世界一流展馆
评论
0/150
提交评论